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Foreword
This issue contains contributed papers accepted for presentation at the Stochastic and

Physical Monitoring Systems (SPMS2020) conference held in Chlum u Třeboně, Czech Repub-
lic, September 17 - 21, 2020 and SPMS2021 conference held in Malá Skála, Czech Republic,
June 24 - 28, 2021.

The SPMS2020 and SPMS2021 conferences were held for the ninth and tenth time with
the aim to bring together students and researchers with areas of interest related to the following
topics:

� Analysis of microscopical structure of vehicular traffic streams and traffic modeling,

� Monitoring and classification of acoustic signals in material defectoscopy,

� Small area estimation of geographical characteristics gained from data sets,

� Data processing in high energy particle physics,

which are all together briefly called Stochastic and Physical Monitoring Systems.

The meetings were organized by the Group of Applied Mathematics and Stochastics
(GAMS), Department of Mathematics, FNSPE, Czech Technical University in Prague.

Local Organizing Committee:

Václav Kůs (Chair)
Jǐŕı Franc
Jana Vacková
Petr Boǔr

Scientific and Program Committee / Reviewers:

Tomáš Hobza, CTU in Prague, Czech Republic
Jǐŕı Grim, UTIA, Academy of Science, Prague, Czech Republic
Václav Kůs, CTU in Prague, Czech Republic
Domingo Morales, UMH de Elche, Spain
Zdeněk Převorovský, IT, Academy of Science, Prague, Czech Republic

Invited Speakers:

Milan Chlada, IT CAS, Prague, Czech Republic
Jaros law Was, AGH UST, Krakow, Poland
Antolino Gallego, University of Granada, Spain
Milan Krbálek, FNSPE, CTU in Prague, Czech Republic
Serge Dos Santos - INSA CVL, Blois, France

We gratefully acknowledge the institutional support provided by the funds of specific
research, namely by the SGS grants SVK 26/20/F4 and SVK 29/21/F4. But our largest debt
is to all authors who submitted their work, thus making the SPMS2020 and SPMS2021 such
lively meetings.
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K. Jar̊ušková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Blind Source Extraction of Moving Source from Linear Mixtures
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M. Krbálek, F. Šeba and M. Krbálková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Machine Learning Estimators for Jet Shapes Background Correction
M. Kub̊u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Field Crops Classification Using Sentinel-2 Satellite Image Data
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Abstract. The aim of the blind image deconvolution is to estimate a latent sharp image from
an observed blurry image when the blur is unknown. This problem is highly ill-posed. One of
the approaches used for blind image deconvolution is variational Bayes, which allows to easily
incorporate prior information. Priors have to be carefully chosen not only to regularize the
problem well, but also to make it tractable. In this paper we compare two iterative algorithms
for variational Bayes inference, one that was used previously and a new one that is not as strict
when it comes to the choice of priors.

Key words: Blind image deconvolution; Variational Bayes; Stochastic gradient descent;
Reparametrization trick.

1 Introduction

Images play an important role in many areas of life. In medicine they help with diagnosis,
astronomers take images to discover distant stars and almost everyone takes a photo on
their smartphone from time to time. Because of various reasons, like a relative motion
of camera and scene, the images are often blurred and deblurring them is not straight-
forward. Assuming spatially invariant blur, the blurred image can be represented as a
convolution of blur kernel k and the underlying sharp image x

d = k ~ x+ n, (1)

where n is noise. Deconvolution is basically an inverse operation to convolution with
the aim to obtain the sharp image. The deconvolution is called blind when not only the
sharp image, but also the blur is unknown. The task is then to minimize ||d − k ~ x||
with respect to both x and k. The problem is highly ill-posed so further regularization is
necessary. The Bayesian approach is based on prior information which makes it a suitable
tool for this task.

In the first section, variational Bayes (VB) will be introduced, together with the
proposed model for blind image deconvolution. After that, two algorithms will be pre-
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2 A. Brožová, V. Šmı́dl

sented, followed by an experimental section where their performance will be compared
on synthetic data.

2 Method

The problem of blind image deconvolution is highly ill-posed and prior information is
needed to successfully recover the underlying sharp image. Two most common Bayesian
approaches used for blind image deconvolution are MAP (maximum a posteriori) ap-
proach and variational Bayes method. The first mentioned was deeply studied by Levin
et al. in, for example, [1]. Although it is often used, it usually requires some ad hoc steps
to find the right solution.

Variational Bayes inference uses an approximation of posterior which makes the prob-
lem tractable for common distributions. Fergus et al. suggested to use this approach
for blind image deconvolution in [2] in the same year with Molina et al. [3]. A brief
explanation of this method follows.

The variational Bayes method is based on the Bayes theorem

p(x,k|d) =
p(d|x,k)p(x,k)

p(d)
,

where p(x,k|d) is posterior distribution, p(x,k) = p(x)p(k) is prior distribution and
p(d|x,k) is distribution of noise from (1). If we assign prior to each variable and get the
joint posterior distribution, marginalization is needed in order to find the estimates of
the sharp image and the blur kernel. Variational Bayes overcomes the marginalization
by approximating the posterior by q(x,k|d) for which holds

q(x,k|d) = q(x|d)q(k|d). (2)

The model is usually hierarchical and it is assumed that each random variable has the
property (2). Let denote θ all random variables in the model. Kullback-Leibler (KL)
divergence of q from p is defined as

KL (q(θ|d) ‖ p(θ|d)) = Eq(θ|d)
[
ln
q(θ|d)

p(θ|d)

]
, (3)

where Eq(θ|d) [.] denotes expected value with respect to q(θ|d). Then approximations of
the posteriors that minimize KL divergence from the real posteriors are of following form

q(θi|d) ∝ exp
[
Eq(θ\i|d) [ln p(θ,d)]

]
,

where θ\i means all variables in θ except for i-th one.

2.1 Priors

The choice of priors is crucial, especially when it comes to an image prior. Wipf and
Zhang in [4] argue that it is more important that the image prior discriminates the no-
blur solution (i. e. sharp image is estimated as the blurred one and kernel as δ-function)
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than that it reflects the real image statistics. An image is usually assumed to be smooth,
thus models promoting sparsity in its gradients ([5], [6]) are used.

It is favourable to rewrite (1) in the matrix form

k ~ x+ n = Kx+ n = Xk + n,

where x is vectorized image of size n×p, k is vectorized blurring kernel of size 2s+1×2s+1,
K and X are convolution matrices in block Toeplitz form, where blocks are Toeplitz
matrices, constructed from k and x, respectively. The distribution of noise is assumed to
be normal with zero mean and precision matrix ωI, where I is identity matrix and ω is
a hyperparameter, therefore distribution of observation d is normal with mean Kx and
each pixel has precision ω. The prior distribution of ω is gamma with shape γ0 and rate
η0.

ARD (Automatic Relevance Determination) model [5] was chosen for image prior.
The ARD model achieves sparsity by combination of normal and gamma distribution

∇x|τx ∼
∏
i

N
(
0, τ−1xi

)
,

τxi ∼ G (αx0, βx0) ,

where ∇ denotes derivative operator, i.e. ∇x is a vector of horizontal and vertical dif-
ferences, and τxi is precision of i-th difference on image. This model is also called scale
mixture of gaussians which is considered to be super-gaussian prior [7].

The blur kernel’s prior distribution was chosen as

k|τk ∼ N (0, τkI) ,
τk ∼ G (αk0, βk0) .

2.2 Posteriors

The combination of gamma and normal distributions makes it extremely easy to infer
the posterior distributions. As they are conjugate, posteriors of x and k are normal

q(x|d) ∼ N (µx,Σx) ,

q(k|d) ∼ N (µk,Σk) .

The posteriors of precisions were chosen to be Dirac δ-functions with nonzero values in
τ ∗x , τ ∗k and ω∗. After some manipulations we get that

Σx =
(
Eq
[
ωKTK

]
+∇Tdiag(Eq [τx])∇

)−1
,

µx = ΣxEq
[
ωKT

]
d,

Σk =
(
Eq
[
ωXTX

]
+ Eq [τk] I

)−1
,

µk = ΣkEq
[
ωXT

]
d,

τ ∗x =

(
1

2
Eq
[
xT∇T∇x

]
+ βx0

)−1(
αx0 −

1

2

)
,
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τ ∗k =

(
1

2
Eq
[
kTk

]
+ βk0

)−1(
(2s− 1)2

2
+ αk0 − 1

)
,

ω∗ =

(
1

2
Eq
[
dTd− dTKx− xTKTd+ xTKTKx

]
+ η0

)−1 (np
2

+ γ0 − 1
)
, (4)

where Eq[.] denotes expected value w.r.t. q(θ,d).

2.3 Iterative Variational Bayes algorithm

The first algorithm to be presented in this paper is the iterative variational Bayes (IVB)
algorithm used in, for example, [9]. This algorithm utilizes the fact, that the forms of
posterior distributions are known and we only need to find values of their parameters.
The expressions for the parameters form a set of linear equations that need to be solved
to minimize the KL divergence of approximation from real posterior.

The covariance matrix of the image posterior is ill-conditioned, therefore, it is assumed
to be diagonal. The expression for the mean of the image posterior requires an inverse
of the covariance of the image. For higher accuracy, the estimate of µk is obtained with
conjugate gradients instead of using the diagonal covariance. The pseudocode is written
below as Algorithm 2. This algorithm is basically E-M algorithm, getting estimates of
parameters of normal distributions corresponds to E-step and recomputing τ ∗k , τ

∗
x and ω∗

is M-step.

Algorithm 1: IVB

1 Initialize all variables
2 While not converged

Update Σx as inverse of diagonal matrix from ωKTK +∇Tdiag(τ ∗x )∇

Update µx as a solution of
(
ωKTK +∇Tdiag(τ 2

x )
)
µx = ω∗KTd

Construct Eq [X], Eq
[
XTX

]
and Eq

[
kTXTXk

]
from µx, Σx, µk, Σk

Update ω∗ according to (4)

Update τ ∗k according to (4)

Update τ ∗x according to (4)

Update Σk according to (4)

Update µk according to (4)

Return image estimate µx and kernel estimate µk.
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2.4 ELBO optimization

IVB algorithm requires conjugate priors so that it can only recompute parameters of the
distributions, which is very restrictive. Lets rewrite KL divergence into another form

KL(q(θ|d)||p(θ|d)) =

∫
q(θ|d) ln

[
q(θ|d)

p(θ,d)

]
dθ + ln p(d) = −L+ ln p(d). (5)

KL divergence is always non-negative, therefore, L in equation (5) is lower bound on
ln p(d). It is called evidence lower bound (ELBO). The goal of VB is to minimize the KL
divergence which is equivalent to maximizing ELBO. From (5) we can see that

L = Eq(θ|d) [ln q(θ|d)− ln p(θ,d)] . (6)

Negative value of (6) can be minimized, for example, via stochastic gradient descent, but
it requires the expectations w.r.t. q(θ|d) to be known in closed forms so that is possible to
take their derivatives. When it is not the case, some expected values can be approximated
with a reparametrization trick as was suggested for variational autoencoders [8]. Let’s
say, that it is hard to find an expected value of some function f(θi) w.r.t. q(θi|d) and
that it is possible to reparametrize θi = g(m, ε), where m are parameters of q(θi|d) and
ε is a random variable with distribution p(ε). Then

∇mEq(θi|d) [f(θi)] = ∇mEp(ε) [f(g(m, ε))] ≈ 1

L

L∑
l=1

∇mf(g(m, εl)),

where ∇m is gradient operator with respect to m and εl is l-th sample of ε.

In order to test the approach from the previous paragraph, a second algorithm will
be proposed. Parameters of the posterior distribution of k will be estimated via stochas-
tic gradient descent and the reparametrization trick will be used. The function to be
minimized w.r.t. Σk and µk is

−p(d|x,k, ω)− p(k|τk) + q(k|d). (7)

The first element of (7) contains the most complicated expected value in the whole model:
Eq
[
xTKTKx

]
. To approximate this expression, the reparametrization trick was used

and k was repametrized as follows

k = µk + Σ
1
2
k ε,

ε ∼ N (0, I) .

Covariance matrix Σk is estimated as a product of two matrices SkS
T
k , which means

that the covariance matrix is symmetric and makes the reparametrization easier. The
pseudocode of the IVB algorithm with two estimates obtained by ELBO maximization,
named IVB+ELBO, is below as Algorithm 2.
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Algorithm 2: IVB+ELBO

1 Initialize all variables
2 While not converged

Update Σx as inverse of diagonal matrix from ωKTK +∇Tdiag(τ ∗x )∇

Update µx as a solution of
(
ωKTK +∇Tdiag(τ 2

x )
)
µx = ω∗KTd

Construct Eq [X], Eq
[
XTX

]
and Eq

[
kTXTXk

]
from µx, Σx, µk, Σk

Update ω∗ according to (4)

Update τ ∗k according to (4)

Update τ ∗x according to (4)

Set ηADAM of SGD with ADAM to 0.001

For 1000 steps

Generate new ε and get gradients of (7)

Update µk, Sk

Return image estimate µx and kernel estimate µk.

3 Experiments

The two algorithms were tested on synthetic data. A cut-out from Lena [10] was blurred
with a gaussian kernel and white noise was added to the degraded image. Figure 1 shows
the sharp image, blur kernel and degraded image. Figure 2 shows estimates of the sharp
image and the blurring kernel returned by both algorithms. Nonblind deconvolution
(matrix inversion with a small value added to its diagonal) with estimated kernel µk is
then used to find the sharp image. Signal to noise ratio was set to 50dB in this case.
The kernel estimate found by Algorithm 2 is symmetric and very similar to the correct
one and the image seem to be sharper than the degraded image in Figure 1. The blur
kernel found by Algorithm 2 is not that accurate at all, although the reconstructed image
seems to be quite sharp. To compare them reliably, PSNR (peak signal to nose ratio)

Figure 1: The left image is the sharp image, the blur kernel is in the middle and the
degraded image is shown on the right side.
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was computed for each estimate, the values can be found in Table 1. From the values of
PSNR, it is obvious, that reconstruction performed by Algorithm 2 is better than the one
by Algorithm 2. For noise level 50dB and full posterior covariance matrix of k, which
corresponds to the images in Figure 2, PSNR of the image obtained by Algorithm 2 is
lower than 30, which is assumed to be a threshold for good reconstruction. Moreover,
the PSNR of the estimate obtained by Algorithm 2 is approximately 36.5, which is a lot
better result than the one obtained with ELBO optimization.

Figure 2: The first column shows the sharp image and the blur kernel, the second col-
umn shows estimates obtained with the IVB algorithm and the third column estimates
obtained with the IVB+ELBO algorithm. The covariance of the blur is full, SNR is 50dB.

Inversion of a covariance matrix is usually costly and inaccurate, so the two algorithms
were also tested for the case when the covariance matrix of blur is diagonal. The estimates
for SNR 50dB are shown in Figure 3. In this case, the estimate of the blur kernel is very
similar for both algorithms, it is not that accurate as the estimate found by Algorithm 2
with full covariance of blur, but still strongly reminds of the real one. The PSNR values
(in Table 1) are comparable for both algorithms and for Algorithm 2, the results with
diagonal covariance matrix are even better than the ones obtained with full covariance.

In order to reach higher accuracy, another form of covariance matrix was tested.
Sk (square root of the covariance matrix) was assumed to be tridiagonal, so that the
covariance matrix had 5 nonzero diagonals: the variance of elements of k was nonzero
and also the covariance with directly neighbouring pixels. When tested with Algorithm
2, the PSNR of estimated sharp images was very similar to values obtained with diagonal
covariance, as can be seen in Table 1. The algorithm was able to estimate the blur well,
but the accuracy was not improved in comparison with the simpler diagonal case. This
form of a covariance matrix cannot be easily used by the Algorithm 2, which show the
higher flexibility of the Algorithm 2.

Algorithm 2 is faster as it does not perform 1000 steps of stochastic gradient descent
with the reparametrization trick, so there is no need to use the Algorithm 2 unless some
expected values need to be approximated.
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Figure 3: The first column shows the sharp image and blur kernel, the second column
shows estimates obtained with the IVB algorithm and the third column estimates ob-
tained with the IVB+ELBO algorithm. The covariance of blur is diagonal and SNR is
50dB.

4 Conclusion

In this paper, the problem of blind image deconvolution was examined through varia-
tional Bayes framework. ARD model was chosen for image gradients because the image
is assumed to be piecewise-constant. Two algorithms were compared. First of them is the
iterative variational Bayes algorithm which utilizes the fact, that prior distributions were
chosen to be from the conjugate system, thus only parameters of posteriors are unknown.
It iteratively recomputes the parameters and minimizes Kullback-Leibler divergence of
approximation of posterior from real posterior. The assumption of conjugate priors is
very restrictive, hence another approach to minimization of Kullback-Leibler divergence
was proposed. The second algorithm uses steps from the first one, but parameters of
the posterior of blur are estimated via maximization of evidence lower bound by stochas-
tic gradient descent. Moreover, the reparametrization trick was used to approximate
complicated expected value, which could be necessary if the priors were not chosen so
conveniently. Both algorithms were tested on a blurred cut-out from Lena. The posterior
of the blur kernel was chosen to be normal and when the covariance matrix of the blur
was assumed to be diagonal, the estimates of the sharp image were comparable for both
algorithms. However, for full covariance, the algorithm with gradient descent did not
find the correct estimate of the kernel. This may be caused by the reparametrization
trick, which uses only one sample to estimate the gradient. To conclude, steps of the
IVB algorithm can be replaced by stochastic gradient descent when needed, for example,
if the blur was spatially variant and had different distributions for different areas of the
image.
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Covariance Blur SNR PSNR IVB PSNR IVB+ELBO
full gauss 20 25.93823 25.12414
full gauss 30 29.91891 28.29330
full gauss 40 32.58748 29.25239
full gauss 50 36.51204 29.01416
diag gauss 20 25.67324 25.91173
diag gauss 30 30.25197 29.96938
diag gauss 40 33.04796 32.57338
diag gauss 50 33.76192 34.88439

tdmat gauss 20 – 25.86696
tdmat gauss 30 – 29.84517
tdmat gauss 40 – 32.47787
tdmat gauss 50 – 32.82565

Table 1: PSNR of image reconstruction for different levels of noise (SNR) and forms of

the covariance matrix of the blur - tdmat stands for the tridiagonal ~Sk.
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Abstract. The history of pedestrian modeling is close to 10 years anniversary. Within this
period, two models have been developed aside of experimental research: cellular and continuous.
Even the motivation was the same and both models use microscopic, rule base approach, there
are many different features – benefits and drawbacks on both side. The aim of this article is to
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1 Introduction

Modeling of crowd motion or, more general, any kind of traffic is an important part of
urbanity planning process. From the engineering perspective, there are just few features
that must a model fulfill: reliability, simple calibration, reasonable calculation demands
and ability to return desired quantities. Different model types are more appropriate for
different requested outputs, but usually there are multiple ways how to achieve them.

The spectrum of desired model outputs may be quite wide. On the macroscopic level,
we are mostly interested in flow, i.e. how many people pass given checkpoint during given
time interval. Such variable is affected by the pedestrian density (number of people in
given area), geometry and pedestrian mindset (motivation, knowledge of given facility and
cultural aspects). The total evacuation time is another crucial quantity from engineering
perspective, it may be replaced by the evacuation time of desired sub-population (all
clients, 98% of all people, ...).

In more detail, we may focus on trajectory level producing individual evacuation time,
local densities, velocity distribution in space and many more fancy features. From scien-
tific perspective such microscopic research brings additional information as macroscopic
quantities may be always derived from microscopic measurements. Moreover, microscopic
observation may explain why the system generates given macroscopic observation.

On the other hand, microscopic models always require more computational power,
their validation is more demanding and they are quite hard to calibrate and to correctly
set up initial and boundary conditions. That’s why engineers prefers to use simple,

11
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well known models, even they are outdated. The transition to modern requires special
motivation, thus the scientific state of the art is quite ahead on engineering .. as always.

Historically there are multiple research streams, each of them dominated some period
in past, based on fashion and available PC performance:

� Hand calculations. Applying queuing theory or ’physical’ mechanics, we can an-
swer many elemental questions. E.g. from given inflow and bottleneck capacity
(maximal flow), one can predict whether the evacuation will be smooth or whether
a congestion would appear.

� Grid models. These models discrete in space and time are using simple movements
rules. Reasonable discretization allows even microscopic approach, as will be shown
later on implemented cellular automata model.

� Force based models. The interaction pedestrians and infrastructure may be defined
as the set of social forces. Then, similarly to classic mechanics, we may introduce
and solve large set of equations to get detail movement description. Quite expensive
and not accurate for large simulations as pedestrian interaction is quite complex,
yet successful in simple geometries.

� Agent based models. The most modern approach is based on intelligent agent
moving in continuous space and time according predefined rules. This approach
combines advantages of all above mentioned approaches yet it may be difficult to
calibrate.

� Data driven models. Another quite new approach based on machine learning tech-
nology. With sufficiently large database, model could predict the next movements
based on some smart mix of historical trajectories. But the ability to process situ-
ation that is not in database is questionable.

Further in this paper, we will focus on two models implemented by our research group
– a cellular automata and agent based model. Both are implemented on microscopical
level but they have quite different rules as they are facing different challenges given by
different spatial limits.

2 Brief model definition

Briefly, cellular automata model is defined on rectangular matrix with cell size 0.5 m.
A cell is either empty or occupied by one pedestrian, thus a movement is realized by
”jump” to a cell in neighborhood. The timespan is therefore set to 0.3 s giving the free
flow velocity up to 6 m/s. The pedestrian update is parallel, each pedestrian pick up
desired cell based on calculated profitability and some random element. The profitability
used to be composed of the distance to the exit, occupancy, conflict anticipation and other
quantities that are either static or easy to update, see visualization on Figure 1. At the
end, potential conflicts (more pedestrian choose the same cell) are resolved – maximally
one pedestrian moves and the others stay. See [1], [2] and [3].
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Figure 1: Profitability of cells in pedestrian neighborhood. φ refers to occupancy, θ to
prediction. Potential is always reflected.

The rule based model is fully continuous in the way that timespan can be as small as
desired and the velocity or course change can as smooth as numerically possible. Let’s
assume each pedestrian has set a checkpoint that he/she wants to reach (an exit, a
counter, ...). A set of checkpoints may be used to model complex infrastructure, but in
this paper we will focus only on simple geometry. The rules itself should hierarchically
follow ”natural” behavior, from smooth motion toward the checkpoint to some crowd
behavior playbook, to more details check [8].

It may seem suspicious that so different models can bring comparable results but as
mentioned in the introduction, it depends on scale and selected variables. Obviously
cellular model generate discrete trajectories, but they can be interpolated, if needed.
Moreover, time frames below 1 s are mostly too smooth even for microscopic analysis.
Targeted variables as travel time distribution, individual velocity – density relation (e.i.
fundamental diagram), local flow and others may be the same.

On the first sight it may seem easier to find a set of rules for continuous model than
express profitability of a cell, but the reality is completely different. The rules are much
easier to develop in a system with finite (actually very low) number of constellations.
As will be shown further, continuous space and the fact that all logic is carried by the
agents make some situations tricky to solve. On the other hand, even a cellular model
need adjustments that would never be required in continuous space.

Moreover, randomness in boundary condition of continuous model may play the same
role as decision randomness in ca model. Small differences in initial positions are multi-
plied in time to obtain various set of trajectories.
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3 Environmental issues

Before we will consider ”desired behavior”, we have to avoid ”undesired effects”, meaning
pedestrian can’t overlap, motion have to be independent on the grid definition and model
should not generate any artifacts.

Continuous rule base model does not bring any unnatural mechanisms, the only thing
to solve is the size of pedestrian. The model itself approximates pedestrian by a point,
let say the center of mass. To keep the rules simple, we were implementing hard core
repulsion for spherical area defined by individualized radius. To prevent two agents to
overlap, it is sufficient to check that they are more distant than the sum of their diameters.

The cellular model has completely different issues. As a cell may be occupied just by
one pedestrian, any potential overlap is excluded. On the other hand, the grid makes any
”skew” trajectory partially rectangular. To enrich limited number of directions from four
to eight, we have allowed diagonal steps. This portfolio is sufficient to reasonably model
the motion, but it brings new complication.

By diagonal step, agent moves
√

2 further than by orthogonal one. To conserve the
pedestrian velocity, we have to compensate it by adjusting time consumption of these
steps – they will take

√
2 times longer. But how to realize that in system discrete in

time?

First, we used approximation
√

2 ≈ 3/2 which keeps all pedestrians in discrete (semi-
integer) steps. Time unit was cut to half and an agent moves each second or third tick,
with respect to the type of step he realized.

This approach opened the door to ”dynamic time span” assuming that pedestrians
may have different velocity i.e. they would need different amount of time to realize one
step. Such behavior may be modeled by adaptive time steps, i.e. each pedestrian has its
own clock where time of next step is calculated and then model clock moves always to
the next individual event.

But completely asynchronous update would mitigate all conflicts, thus we defined
different approach. Each pedestrian still has its own ”time of next update” (ref. tnu),
but the model clock are ticking by predefined frequency. All agents with their tnu within
given tick are updated at once, but their next tnu is calculated from previous tnu, see
schema on Figure 2. E.g. when two pedestrians have similar but not the same velocity,
they would update simultaneously for a while and then the slower pedestrian would miss
one update. The model clock frequency represents the parameter of synchronicity – long
time steps keep the movement synchronous while short time steps emphasizes differences
among pedestrian frequencies.

The diagonal steps deforms even the probability distribution of deviation from straight
trajectory. When the straight direction to the goal follows diagonal steps, potential devi-
ations would be orthogonal, i.e. shorter steps. Such steps would be much less beneficial
thus the probability of these deviations would be low. In contrary when the straight
direction to the goal follows orthogonal steps, potential diagonal deviation would move
pedestrian further. Even the straight step would bring a pedestrian closer than diago-
nal deviations, the difference would not be significant, see illustration on Figure 3. To
compensate this issue, we have to adjust profitability metric by diagonal penalization.
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Figure 2: The visualization of timeline.

Figure 3: The illustration of diagonal movement issue.

4 Interaction issues

As mentioned above, different sets of rules have to describe free flow and congestion
behavior. While free flow is quite simple to model and to calibrate, congestion introduces
some challenges. First, the dense crowd slow down the motion, but id did not stop it.
Moreover, there are secondary crowd motion phenomena ”nice to have” in the model as
line formation, overtaking zones near walls, absence of holes and others.

In the rule based model, the interaction is realized mainly through the conflicts. When
two pedestrians are close enough, their neighborhood profitability is deformed to reduce
the change of the conflict. But they truly restrain each other only when they select the
same cell. In such case, friction function is applied to test whether this conflict blocks the
motion of all pedestrians. If it does not, one pedestrian is (randomly/based on priority
parameters) picked to move.

Such design simply solves the only real issue that cellular model can have in crowd
situations. A conflict is always localized in time and space and its resolution does not
affect other pedestrians. Moreover, implemented system of conflicts is something desired
within CA models – as observed, movement in crowd is much slower than in free flow
and staying after a conflict is the most natural way how to slow down a cellular agent.
Actually to bring the cellular model closer to the experimental / real pedestrian behavior,
a friction had to be set quite high thus the probability that no one moves is high
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In case of continuous agent based model, hierarchical rules were developed to manage
crowd situation, mainly to avoid deadlocks, i.e. the situation when a set of agents forms a
constellation preventing further movement. Such ”arches” could live in some naive model
for ever, but actually they survive even more sophisticated rules.

In our model, one level of rules is applied and the agent next-step position is evaluated
and the availability is checked. If this position is not blocked by any other pedestrian,
the movement is executed, if not, next rule is applied:

� naive: firstly, a pedestrian walks towards his/her checkpoint by his/her desired
speed or he/she is accelerating to reach it

� maneuvers: if such ”optimal” trajectory is blocked, a pedestrian tries to adjust
direction or speed

� downsizing: if a velocity of pedestrian drops to zero, pedestrian reduce his/her
velocity up to certain level

� jump: if a velocity is zero and size reached its minimum, pedestrian jumps to empty
space toward the exit, if reachable

Here we should note that only jump rule defeats arches, previous rules tend to long
lasting deadlock.

Another approach to fight with arches comes from engineers. When the have to store
some granular material e.g. in a silo, they have to prevent any mechanical deadlocks.
To achieve that, they are installing some vibrating equipment to destabilize any grain
formation. Such approach could be implemented in models by increasing of randomness
.. but it is not our path.

Our goal was to keep all movement logic in the head of the agent, without coordination
or environmental support. From this perspective, rule based model is more individualistic
than cellular one which uses agent cooperation to solve conflicts. Unfortunately such
approach can’t be used in continuous model because the arch is not standardized thus
there is no way to prepare some template how to solve it, global rules may be quite hard
to define and (mainly) they could be misleadingly interpreted that pedestrian cooperates
even in competitive scenarios. Instead, we are proposing possible actions what to do
when motion vanishes (for any reason).

Another cellular automata feature relates to the fact that we enable to pick occupied
cell. In that case, a ”bond” (between follower and leader) is created and whenever
an leader moves, follower moves as well. Again, in case more agents are bonded to
another, standard conflict procedure is applied when leader agent moves. This construct
significantly improves movement in lines and increases the flow in the crowd.

It seems that such rule is not needed for continuous model. Continuous time line does
not require to make links between events. Everything happens in given time, there in no
”death time”.

5 Results

As the cellular model was finished almost five years ago, plenty of different simulations
has been generated and analyzed – [1],[4]or [5].
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Here we would like to point out the heterogeneity analysis, where we studied the effect
of velocity (controlled over the frequency of updates), the aggressiveness (controlled by
the ability to win conflicts) and the overtaking (controlled by the willingness to select
occupied cell). Our experimental study [6],[7] uncovered that pedestrians significantly
differ in all three mentioned features, thus the goal was to simulate this behavior.

We have measured individual travel times, trying to find parametric sets generating
corresponding distributions. The overtaking parameter itself does not affect travel time,
thus it was excluded from simulation results illustrated on 4 and 5.

Figure 4: Individual travel time for heterogeneous population, development in time. γ = 1
refers to aggressive behavior, τ is the update period.

Figure 5: Individual travel time for heterogeneous population, trend with increasing
occupancy.γ = 1 refers to aggressive behavior, τ is the update period.



18 M. Bukáček, J. Vacková

When parameters were set, we tried to reproduce observed phase transition induced
by inflow to the experimental room. As illustrated on Figure 6, the phase transition
from free flow to congested state is rather smooth than jump-like, we can even observe
metastable intermezzo.

Figure 6: Trend of occupancy in time for different values of friction parameter.

The rule based model is still in calibration process [9], thus such simulations has not
been executed. At least the calibration indicates that the model is able to reproduce
demanded range of flow based on dynamic parameters, see Figure 7.

Figure 7: The outflow with respect to critical acceleration and course change range.
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6 Conclusions

This paper compared cellular and continuous model of pedestrian behavior. As dis-
cussed, both approaches had to face several difficulties – fortunately all cellular issues
had been solved using smart tweaks improving the rule base and the continuous model
seems promising as well.

These improvements are beneficial not only for implemented models, but for the whole
pedestrian modeling community because addressed problematic situations are common
for wide range of models.

Next work will focus on finalizing of continuous model calibration. We are trying to
standardize the calibration process using independent episodes focusing in different model
features. After that, the model will be verified on complex simulations and hopefully used
for next projects.

Acknowledgements

This work was supported by the grant SGS18/188/OHK4/3T/14.

References
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1 PM space model characterization

In this paper, the Preisach-Mayergoyz (PM) model [1] of hysteresis is introduced as a tool
for describing hysteretic material and its elastic structure. This approach is mainly associ-
ated with the nondestructive testing (NDT) defectoscopy technologies [2]. The PM space
model is based on the idea that a given material is composed of a large number of small
elastic units (particles, ferromagnetic elements, cracks, etc.) called here hysterons, Fig-
ure 1a). The Preisach’s operator γ̂α,β of hysteron is mathematically expressed as

+1

-1a b c

d ef

u(t)

v(t)

Figure 1: (a) Hysterons can be found either in closed state assigned to +1 or open state
assigned to -1 (b) Profile of earthquake damper I-section [3].
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γ̂α,β(u(t)) =


−1, u(t) ≤ β,

1, u(t) ≥ α,

k, u(t) ∈ (β, α),

whith β ≤ α and u(t) ∈ (β, α) as an input signal, where

k =

{
1, if ∃t∗ : u(t∗) > α and ∀τ ∈ (t∗, t),

−1, if ∃t∗ : u(t∗) < β and ∀τ ∈ (t∗, t).

Our goal is the evaluation of elasticity of dissipative dampers, which are used for building
protection against earthquakes. The principle instrument of this passive protection can
be seen in Figure 1b) and the series of these energy dissipating devices (EDDs) are used
as the web plastifying damper (WPD). The PM based method of fatigue evaluation of
these dampers is the crucial point in health monitoring of nowadays architecture objects
in endangered countries. In case of the dampers, α and β represent closing (Pc) and
opening (Po) values of damper’s plastifying cells with respect to the form of loading (e.g.
tensile force/presure). Applying the input signal u(t), the output of hysteretic system,
denoted by v(t), can be described in the continuous case as a double integral over the
PM space

v(t) =

∫ ∫
β≤α

µ(α, β) γ̂α,β(u(t)) dα dβ,

where µ(α, β) is a probability density on the Preisach triangle β ≤ α, see Fig. 2.

 =  = 

Figure 2: Schema of Preisach-Mayergoyz model [1].
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2 PM space density identification

The main objective of PM space modelling is the identification of corresponding prob-
ability density function of hysterons µ(Pc, Po) in PM space only from the knowledge of
the input load and the corresponding hysteresis curve of the damper under testing load.
We applied the standard statistical distributions as Gaussian, Exponential, Weibull, Uni-
form, but also Guyer’s distributions [4, 5]. As an example, we present here only the third
distributions of Guyer and Koen. PM distribution Guyer 3 is defined by

Pc = max · r αc , Po = Pc · (γ × ro) β , α, β ∈ R+
0 , γ ∈ (0, 1),

where ’max’ is the maximum of input load, Pc and Po are closing and opening values, rc
and ro are random numbers uniformly distributed in interval (0,1), while α, β, γ represent
free parameters of the distribution. Further, PM distribution Koen can be expressed as

Pc = max · rc, Po = (Pc/α)β · ro, α, β ∈ R+
0 ,

where α, β represent free distributional parameters again. Notice that the Koen distri-
bution uses quite different parametrization compared to Guyer 3. To identify potentially
complex structure of PM spaces of a given material/damper, we apply statistical theory
of distribution mixtures [6]. It means, we seek for the best convex combination of M
density components pi in the form

p(x|Θ) =
M∑
i=1

λi pi(x| θi),
M∑
i=1

λi = 1,

where pi(x| θi) are probability density functions with parameters θi and the component
weights λi > 0 for all i ∈ {1, ...,M}.

3 Jaya numerical optimization technique

The optimization problem consists of minimizing distance measure between the calculated
hysteresis curve and the observed hysteresis curve in each iteration step. We applied clas-
sical L2-distance or Hellinger and Le Cam φ-divergences, which are more robust against
measurement errors. We focus here on the Le Cam divergence

LC2(p, q) =

∫
(p− q)2

p+ q
dµ,

Hellinger distance

H2(P,Q) =

∫
(
√
p−√q)2 dµ,

where p and q are probability densities with respect to a σ-finite measure µ on R. LC is
a special case of the general information-theoretic measure called φ-divergence between p
and q,

Dφ(p, q) =

∫
q φ(p/q) dµ,
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for convex function φ(t) ∈ [0,∞), φ(1) = 0, strictly convex at t = 1 (details in [7, 8]).
The identification process of PM density is carried out by choosing a novel numerical
minimization meta-heuristic algorithm called Jaya presented by Rao [9] in 2016. It is
based on Jaya operator applied in each iteration to the argument x = (x1, x2, ..., xD) of
the minimized functional f(x) in the form

ui,j,k = xi,j,k + rand1,i,j · (xbest,j,k − |xi,j,k|)− rand2,i,j · (xworst,j,k − |xi,j,k|) ,

where the index i is population index, j is the component index of x, and k denotes iter-
ation number, rand1,i,j, rand2,i,j are uniformly distributed pseudorandom numbers from
interval [0, 1]. We present the pseudo-code of this Jaya algorithm below. Performance
of the Jaya algorithm was tested many times and it surpassed the well-known Simulated
Annealing algorithm in most cases of our PM density identification task.

Algorithm 3: Pseudo-code for Jaya numerical minimization algorithm

1 Generate initial population, evaluate f(x)
2 Choose the best (xbest) and the worst (xworst) solution in the population
3 while Stoping rule do
4 for i = 1 to NP do // NP number of populations

5 for j = 1 to D do // D dimension of vector x
6 ui,j = xi,j + rand1,j · (xbest,j − |xi,j|)− rand2,j · (xworst,j − |xi,j|)

// Jaya op.

7 end
8 Evaluate f (x) in ui
9 if f (ui) ≤ f (xi) then

10 xi = ui
11 else
12 xi = xi
13 end

14 end
15 Actualize xbest and xworst
16 end

4 Elasticity index of hysteretic dampers

We have at disposal the signals obtained from 6 vibration tests of the web plastifying
dampers measured at the University of Granada by prof. A.Gallego research group, an
example for the third damper cycle see in Figure 3.

The goal is to propose and evaluate a new index of damage/elasticity [3]. Our new
procedure is the following. First, the numerical PM space density automatic identification
for all 6 damper cycles is proceed, then the PM points are generated. Second, these points
from PM triangle are projected onto the right leg of PM space, followed by the one-
dimensional nonparametric kernel estimator evaluated for optimally chosen bandwidth
under Gaussian kernel [10]. The scheme of this evaluation process is shown in Figure 4.
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Figure 3: Hysteresis loops and input loads measured for earthquake damper (data from
A.Gallego’s research group/UG).
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Figure 4: Scheme of 1D-kernel estimator after right leg projection of all PM points, i.e.
projection to right leg → 1D representation of PM space → Gaussian kernel estimate.

Alternatively, we have used fully two-dimensional kernel estimator on Preisach triangle
for the specific triangle binning leading to pyramid kernel (Figure 5)
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Figure 5: 2D-pyramid kernel estimate in PM space with smoothing parameter h.

f̂ (x ;h) =
1

nS

n∑
i=1

s (x ;h)

(
1− di (x)

h

)
Is(x ;h) (Xi) ,
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where n is number of PM points, S denotes area of Preisach triangle, s (x ;h) is the area
of pyramid kernel support with smoothing parameter h, di (x) measures distance of i-th
hysteron Xi from the point x, and Is(x ;h) represents characteristic function of s (x ;h).
These designs of 1D-projection and 2D-triangle binning is based on the knowledge of PM
space of ideally elastic non-hysteretic material when all the PM points are located at
the diagonal of PM space and these hysterons are moving to the bottom leg of the PM
triangle as damage level increases.
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Figure 6: Identified PM spaces and corresponding 1D-Gaussian kernel estimates for the
3 first cycles of earthquake damper.

The final PM space Jaya-Le Cam identifications for the 6 cycles of earthquake EDD
damper under increasing damage are shown in Figures 6 and 7 for 1000 hysterons (plastify-
ing cells). Consequently, for all 6 damper loading cycles, the indexes of elasticity/damage
IE were computed as appropriately scaled and normalized Le Cam divergence between
the identified PM density kernel estimate against referential ideally elastic PM density,
i.e.

IE =
(LC · 100)1+LC·100

IEmax

∈ [0, 1],

where IEmax is the maximal value of IE for absolutely nonelastic PM space. These
relative IE indexes for successive 6 testing cycles of earthquake damper are presented in
Table 1.

The greatest increase of the proposed PM elasticity/damage index occurred during the
first cyclic loading, afterwards growing gradually up to 0.915 referring to significant dam-
age of this earthquake damper and developing disruption of its elasticity (plasticity).
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Figure 7: Identified PM spaces and corresponding 1D-Gaussian kernel estimates for the
cycles 4-6 of earthquake damper.

Test #1 #2 #3 #4 #5 #6
IE 0.538 0.872 0.899 0.908 0.91 0.915

Table 1: Indexes of elasticity for 6 damper cycles under successive loading resulting from
our new identification 1D-kernel PM procedure.
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Chlum u Třeboně, Czech Republic

Estimating Size of the Support Space of Learnt Dis-
tribution

Kristina Jar̊ušková
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Abstract. Deep generative algorithms such as variational autoencoder (VAE) and gener-
ative adversarial networks (GANs) became very important in the field of image generation.
Many works suggest that the GANs are able to learn the underlying distribution sufficiently
closely given enough data and time. However, different methods of evaluation of the generative
models focus on different issues. This article examines the test presented in [1] which focuses
on measuring the support size of the generated distribution.

Key words: Birthday paradox; Generative models; Image simulations, Support size.

1 Introduction

Deep learning models are nowadays widely used for discriminative purposes, they very
often represent the state-of-the-art methods for mapping a high-dimensional input to
a class label. Recently, the deep models turned out to be efficient for simulation purposes
as well. The deep generative models represent a probability distribution over the given
space which they learn from the training dataset. Such model can then be used to generate
new samples from the learnt distribution. Several approaches were taken to tackle this
task, among them the most successful are the variational autoencoder (VAE) [2] and
the generative adversarial netowrks (GANs) [3]. The latter one were first tested for image
generation using the MNIST dataset [4] and CIFAR-10 dataset [5, 3] but they experienced
a recent spread to many other areas such as face images generation, video generation or
simulations of particle detectors in high energy physics (HEP) [6].

In many applications, the quality of the images or videos generated by GANs can be
inspected visually by human eye. However, this is not applicable to all types of data and it
does not provide an information about the variance or the support space of the generated
distribution. Specifically, the GANs do not provide an estimate of some measure of dis-
tributional fit which makes it uneasy to determine if the GAN actually learnt the original
distribution. The question of evaluating the generative models still remains open.
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2 Generative Adversarial Networks

Generative adversarial networks (GANs) consist of two neural network models, the gen-
erator and the discriminator. The former maps a latent noise vectors (e.g. sampled from
the Gaussian distribution) to synthetic examples that are similar to real samples. The lat-
ter is a discriminative network that has been trained to distinguish between the real
and synthetic (fake) samples. These two networks are trained concurrently. The goal
of the generator is to fool the discriminator in distinguishing between the real and fake
samples - these two networks act as ”adversaries”. The output from the discriminator
gives feedback to the generator - if the discriminator is able to recognize the fake samples,
the weights of the generator are changed. By the end, the generator net produces realistic
samples that the discriminator is unable to recognize.

Let {Gu, u ∈ U}, U ⊂ Rp, denote the class of generators, where Gu is a function
from Rl → Rd representing a generator with parameters u that produces samples from
a distribution DGu . The generator Gu takes a latent vector z from the l-dimensional
spherical Gaussian distribution as its input. Similarly, let {Dv, u ∈ V}, V ⊂ Rp denote
the set of discriminators, where Dv is a function from Rd to [0, 1] with parameters v.
The distribution of the real samples is denoted Dreal.

A well trained discriminator should output a high value (equal or close to 1) when
the given sample x is sampled from a distribution Dreal of the real samples and a low
value (equal or close to 0) when the sample x comes from the generated distribution DGu .
Therefore, the discriminator tries to maximize its objective function JD, i.e.

max
v∈V

JDv = max
v∈V

[
Ex∼Dreal [log Dv(x)] + Ex∼DGu [log (1−Dv(x))]

]
.

On the other hand, the generator attempts to fool the discriminator, i.e. it tries to mini-
mize the objective function JGu

min
u∈U

JGu = min
u∈U

Ex∼DGu [log (1−Dv(x))].

These definitions correspond to the standard GAN training presented in [3]. The over-
all optimization problem can be formulated as a minimax game over JDv , i.e.

min
u∈U

max
v∈V

[
Ex∼Dreal [log Dv(x)] + Ex∼DGu [log (1−Dv(x))]

]
.

In other words, the generator tries to fool the best discriminator as much as possible.
From the point of view of the game theory, solving this minimax game is equivalent to
inding the Nash equilibrium, i.e. a pair (Gu∗, Dv∗) such that no network can improve its
objective function by an unilateral change in parameters [7].

3 Estimating Support Size

The previous section ended with the remark that the GAN training is equivalent to search-
ing for the Nash equilibrium of the minimax game. However, it might not be possible
to find the exact equilibrium and even when the equilibrium is found, it does not mean
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that the generated distribution is the same as the real distribution. In fact, the quality
of the generated samples depends on the quality of the discriminator.

In [1], the authors proposed a method for estimating the support size of the gen-
erated distribution based upon the birthday paradox. The birthday paradox concerns
the probability that, in a set of n randomly chosen people, there will be at least one pair
of them with the same birthday. The probability of having two people with the same
birthday is 0.5 for only 23 people in the room. In other words, assume N possible dif-
ferent samples. According to the birthday paradox, a set of

√
N samples will contain

a duplicate with the probability of 0.5. This idea can be used to estimate the support
size of the distribution learnt by the GAN. The test is as follows.

1. Take a set of s samples generated from the GAN.

2. Identify duplicates.

3. Repeat.

If the test reveals that the set of size s has duplicates with the probability ≥ 0.5, then
the support size of the distribution is less than s2.

4 Experimental Results

Assume, that the real data are three-dimensional images of energy deposition of a particle
in a particle detector. The 3DGAN algorithm [6] was trained on this data to produce
synthetic images of events in a detector. To identify the duplicates and measure the sup-
port space, it is first necessary to select a feature that will be compared and a suitable
metric on that feature. Here, we select energy distributions along axes x, y and z as our
features and the Jensen-Shannon divergence for the unnormalized distributions

JSD (p, q) =
1

2
D

(
p,
p+ q

2

)
+

1

2
D

(
q,
p+ q

2

)
,

where D(p, q) = p · log
(
p
q

)
− p + q is the unnormalized Kullback-Leibler divergence.

Other divergences suitable for unnormalized distribution, such as those proposed in [8, 9]
or the Rényi divergence used in [10, 11], could be used as well.

First, the real data (denoted as G4 in this paper) were used to determine the threshold
values of the Jensen-Shannon divergence for which a pair of samples will be considered
as duplicates in the given direction. A set of 5 000 samples of the real data was taken
and the JSD was computed for all possible pairs. Then the 0.05-quantile was taken
as the threshold determining the duplicates. The quantile values for energy distributions
in each direction are in the table 1.

Then, these quantiles are used to detect duplicates in both real data and the generated
data for sets of different sizes, the numbers of duplicates are in the table 2. We can
immediately see, that the dataset of generated samples contains more pairs for which
the JSD is below the threshold in comparison with the G4 dataset. The histograms 1
depicts the distribution of the values of the JSD for the three directions of the energy
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Axis 0.05-quantile
x 0.0114
y 0.0200
z 0.0071

Table 1: 0.05-quantiles of the Jensen-Shannon divergence for all axes computed using
the G4 (real) data.

distributions for datasets of 500 samples. We observe that the histograms of the distances
computed on energy distributions along the y axis are alike for the G4 and the GAN data.
On the other hand, the histograms for the z axis distributions are significantly different,
the GAN dataset has obviously lower values of the JSD between the samples indicating
that the GAN produces more duplicates than are present in the real data. To impose more
restrictions, we now mark as duplicates only those pairs of samples for which the Jensen-
Shannon divergence is below the thresholds for energy distributions along all three axes.
The table 3 contains the numbers of duplicates that are found by this combination of three
restrictions.

G4 (real data) GAN (generated data)
Dataset size x y z x y z

100 204 225 300 489 248 834
200 978 1 081 1 074 1 860 1 152 3 459
500 6 255 6 267 6 496 11 189 6 889 20 962

Table 2: Number of duplicates in datasets of different number of samples for both the G4
and the GAN data.

Dataset size G4 (real data) GAN (generated data)
100 2 25
200 8 93
500 31 491

Table 3: Numbers of pairs of samples that are below the 0.05-quantile threshold for dis-
tributions in all three directions.

Finally, these observations were used to perform the evaluation based on the birthday
paradox. The 0.05-quantiles of the Jensen-Shannon divergences were computed separately
for the energy distribution along each axis using 5 000 samples of the real data. Then
a subsample of size s was taken from both real data and generated data and the duplicates
were detected using the combined condition on all three directions. This step was repeated
500 times. It was observed that for as little as s = 20 samples, the GAN subsample
contained at least one duplicate in 272 cases out of 500 which means that the probability
of encountering a duplicate in a set of size 20 is ≥ 0.5 and by the birthday paradox,
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Figure 1: Histograms of the Jensen-Shannon divergences for datasets of 500 samples.

the support size of the GAN distribution is approximately 400. The G4 subsets contained
duplicates in only 27 cases out of 500. This only confirms the surmise that the distribution
learnt by the GAN does not cover the whole support space of the original distribution.

Closer examination of the duplicates revealed that the 0.05-quantile might be too
large, lower quantiles are currently tested. If the 0.05-quantile is truly too large, it
means that our previous estimate of the support space is a lower bound of the actual size
of the support space of the generated distribution.

Summary

In the first two sections, this article introduced the basic concept of the generative adver-
sarial networks (GANs). In the third section, the newly proposed method of estimating
support size of the generated distribution based on the birthday paradox was briefly
described. The last section focused on implementing this method for estimating the sup-
port size for data from particle detector simulations. At first, the energy distributions
along axes x, y and z were selected as the features of interest. Then the unnormal-
ized Jensen-Shannon divergence was used as a measure of distance between these energy
distributions. Using the real samples (G4 data), the threshold value was determined
as the 0.05-quantile of the divergences between the real samples. Finally, the birthday
paradox test was performed.
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It was observed that the distances between the generated samples are smaller than
for the real samples. This is particularly significant for the energy distributions along
the z axis. In addition to that, it was determined that the lower bound for the support
size of the generated distribution is 400. Because the 0.05-quantile might be too large,
lower quantiles are currently being tested.
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Abstract. This paper focuses on extraction of a moving source of interest (SOI) form a linear
mixture. The rest of the mixture is called the background. The mixture is designed according
to a famous independent component analysis (ICA) model, however, ICA deals only with static
mixtures. Thus, the extension to dynamic sources is completely novel. The model dynamics
is described in two ways: moving SOI with static background, and static SOI with moving
background. In the experimental part, novel approaches are applied to real speech sources, and
compared to state-of-the-art algorithms. The asymptotic performance, expressed in terms of
Cramér-Rao Lower Bound on separation accuracy, shows huge potential of proposed methods.

Key words: Blind source extraction; Cramér-Rao lower bound; Independent component
extraction; Speech sources.

1 Introduction

Blind source separation (BSS) aims at recovering a set of unobservable signals from a
set of observed mixtures [1]. When the sources are statistically independent, BSS can
be solved through the statistical tool of independent component analysis (ICA). Blind
source extraction (BSE) aims at recovering a single signal of interest (SOI) from a set
of observed mixtures of sources [1], and can be solved through independent component
extraction (ICE).

Since different ICA/ICE methods provides different performance, lower bound on
separation accuracy help to compare them. The Cramér-Rao lower bound (CRLB) plays
the role of the limit on achievable accuracy. This paper deals with the BSE problem
where the SOI is assumed to be independent from the background. The focus is on
the piecewise determined mixing model designed for dynamic mixtures, i.e., the moving
source in a static background.

In the assumed model, the observed sources are partitioned into multiple blocks where
each block obey the standard determined model, see [2].
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The paper is organized as follows. The proposed model is described in Section 2.
Section 3 provides lower bounds on separation accuracy, and Section 5 introduces the
real speech separation example. Section 6 concludes the paper.

2 Proposed Model

The ICE model is based on a re-parameterization of ICA model, see [3]. Let u ∈ Cd be
a vector of original sources, and A ∈ Cd×d be a random mixing matrix. ICE assumes,
without loss of generality, that the SOI is the first source u1. Partitioning of the data
into M blocks can be represented by the following mixing model

xm = Amum = amsm + ym, (1)

where m = 1, . . . ,M , the mixing matrix can be partitioned as Am = [am, Am
2 ] and

sm = um1 , ym = Am
2 um2 and um2 = [um2 , . . . , u

m
d ]T . Since neither um2 nor Am

2 is needed to
be estimated to extract sm, we can consider any auxiliary background signals zm such that
ym = Am

2 um2 = Qmzm. Compared to um2 , the elements of zm need not be independent,
thus, Qm can be arbitrary.

Without any further assumption, (1) corresponds to a sequential application of the
standard mixing model, which is straightforward for on-line signal processing but does not
bring any advantage. Therefore, we propose special parameterizations useful for the BSE
problem that assumes the SOI is active in all blocks and some mixing parameters related
to the SOI are fixed on all the blocks. Specifically, the mixing matrices A1, . . . ,AM are
parameterized according to the following two scenarios:

Am
CMV =

(
γ (hm)H

g 1
γ

(
g(hm)H − Id−1

)) (2)

Am
CSV =

(
γm hH

gm 1
γ

(
gmhH − Id−1

)
.

)
. (3)

The models will be referred to as constant mixing vector (CMV) and constant separating
vector (CSV), respectively, because in CMV the mixing vectors a1, . . . , aM are constant
over blocks and are equal to a while in CSV the separating vectors w1, . . . ,wM are all
equal to w. CMV is useful for situations where the SOI is a static source while the
background is varying. CSV involves a moving SOI (varying mixing vector) under the
assumption that a constant separating vector such that extracts the signal from all blocks
exists. These models have been considered for the first time in [4], where they were applied
to blind audio source extraction. Their theoretical analysis were provided in [2] through
the CRLB theory.

3 Lower Bounds on Accuracy

Let Nb be the length of the block, and let Nb be constant over all blocks. The accuracy of
BSS/BSE methods is usually measured in terms of Interference-to-Signal Ration (ISR).
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The ISR for blockwise determined ICE model is defined as

ISR =

∑M
m=1 E[|(ŵm)Hym|2]∑M

m=1 E[|(ŵm)Hamsm|2]
, (4)

where ŵm is an estimated separating vector for the mth block, m = 1, . . . ,M . The
CRLB for ISR, called Induced-CRLB, plays here the role of the lower bound on a sep-
aration accuracy. The bound for block ICE model without any constraints on constant
separating/mixing vector (derived in [2]) is

E[ISR] ≥ 1

Nb

d− 1∑M
m=1 σ

2
sm

M∑
m=1

σ2
sm

κsmσ
2
sm − 1

, (5)

where Nb is the number of samples on a block, σ2
sm is variance of sm, κs = E

[∣∣∣∂ ln ps(s,s∗)∂s∗

∣∣∣2]
for the pdf of the SOI ps(s, s

∗). The comparison of this bound with corresponding bounds
of CSV and CMV mixing models show the performance potential of both novel ap-
proaches. The bound for CMV is given by

E [ISR] ≥ 1

Nb

∑M
m=1 σ

2
sm

M∑
m=1

1

κsm
tr

Id−1 +

(
M∑
i=1

κsi − 1

κsi
C−1

zi

)−1
1

κsm
C−1zm

 , (6)

and the bound for CSV is

E [ISR] ≥ 1

Nb

∑M
m=1 σ

2
sm

tr

( M∑
m=1

κsm − 1

σ2
sm

Czm

)−1 M∑
m=1

Czm

 . (7)

where Cz is a covariance matrix of z.

4 Numerical simulations

To validate the bounds for CMV and CSV, both are compared with empirical results
achieved by block-wise versions of OGICE introduced in [4]. The methods will be jointly
referred to as BOGICE (in [4], BOGICEa is the variant for CMV while BOGICEw is for
CSV).

In the presented simulation we assume the SOI is i.i.d. non-Gaussian over all blocks.
The background is assumed circular Gaussian i.i.d. with unit variance in all blocks.

In trials, d = 5 independent complex-valued signals are generated. The SOI is drawn
from a circular complex Generalized Gaussian Distribution (GGD) with zero mean, unit
variance, α = 2. The nonlinearity is given by the true score function. M blocks of the
same length are considered. Each block is mixed by a random mixing matrix. The mixing
matrices obey the mixing models CMV or CSV, respectively.

The empirical ISRs achieved by BOGICE and BICE are compared with the corre-
sponding I-CRLB. For completeness, we also show the hypothetical I-CRLB of the alter-
native piecewise mixing model. Nevertheless, it should be kept in mind that CMV and
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Figure 1: Average ISR for CMV mixing model when d = 5, N = NbM = 5040, and
varying number of blocks M .
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Figure 2: Average ISR for CSV mixing model when d = 5, N = NbM = 5040, and
varying number of blocks M .

CSV are incompatible unless all the mixing parameters related to the SOI are constant
over the blocks (which is not the case of the experiments here).

Fig. 1 corresponds to the simulation considering the CMV model for varying number
of blocks, that is, M = 1, 2, 5, 10. It shows the mean ISR achieved by BOGICE averaged
over 500 trials and the I-CRLB given by (6) (CMV) and, for comparison, also the I-
CRLBs (5) (BICE) and (7) (CSV). Similar simulation was done with the CSV model;
the results are shown in Fig. 2. As can be seen bounds for BICE and CMV depend on
the number of blocks, but the I-CRLB for CSV does not.

Figs. 1 and 2 show the coincidence between the empirical results by the variants of
BOGICE and the I-CRLB corresponding to the mixing model of the given simulation.
The performances of the methods follow the same dependence on the number of blocks
M as these I-CRLBs. The results also show that BOGICE takes the advantage of the
special mixing model CMV/CSV compared to BICE, as its mean ISR is lower, unless
M = 1 where all mixing models coincide.
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5 Speech sources separation

A real speech experiment was designed to test the benefits that piecewise determined
approach brings to BSE. Since in practice the more interesting situation is a moving
SOI with static background, the following setup was proposed. The SOI was a women
reader that was moving around sensors while the background was a male voice and a
noise of the office. The background sources were static. The sampling frequency of the
signal was Fs = 16kHz. The data was transformed to the frequency domain by the Fast
Fouriere Transform (FFT) with a frame length flen = 1024. For detailed description of
the experiment see [5].

As expected, BICE-based and CSV-based methods succeeded to converge to the de-
sired SOI. CMV-based method extracted the background and suppressed the SOI, since
it is designed for static sources and varying background. Thus, the important goal was to
compare BICE to CSV. Despite both methods converged to the right SOI, BICE was not
able to capture the dynamic character of the mixture. The amplitude of the extracted
SOI is varying, so the listener is disturbed by the changing volume of the sound. CSV
model proved its strength also on real-world data.

6 Conclusions

The computed CRLBs for piecewise determined models uncovered a great potential in
terms of separation accuracy when dealing with moving sources. The CSV model does
not suffer from the increasing number of blocks or decreasing number of samples on a
block. Simulations coincide with the theoretical results and confirm derived bounds. The
BOGICE methods applied to a separation of a moving speaker from a static background
achieved better results than standard ICA methods.
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Abstract. Studying original empirical traffic data, we show surprising statistical anomalies
in the traffic microstructure that can not be explained by current scientific approaches used in
physics of traffic. We quantify these anomalies mathematically and explain their cause. By
means of particle gas, which represents a specific version of the traffic model described by the
general Langevin equation, we show that all these anomalies can be explained by an occurrence
of attractive force components in the model. This approach (in addition to the explanation of the
statistical properties in vehicular microstructure) also makes it possible to detect conditions in
real traffic flows, under which the attractive stimuli are considerable. The detected area, where
the presence of strong inter-vehicle attraction stimuli is fully manifested, perfectly matches the
reality of traffic.

Key words: Traffic Data, Vehicular Headway Modelling, Traffic Models, Statistical Rigidity.

1 Introduction, Motivation, Goals

Probabilistic modeling of inter-vehicular gaps (headways/clearances; spatial/temporal)
has very rich and interesting history [1, 2]. Consistently during last four decades, ex-
perts in the field have been offering various headway models tailored to specific traffic
situations and, generally speaking, the efforts to describe a vehicular microstructure by
a relevant probabilistic description can be considered as successful. On the other hand,
generally accepted and generally applicable statistical model still does not exist. How-
ever, a proper decryption of statistical patterns in vehicular microstructure plays a key
role for most tasks dealing with traffic capacities, travel times, traffic optimization, or
autonomous driving of vehicles. This highlights the importance of Vehicular Headway
Modeling (VHM) in an extensive portfolio of Transportation Science disciplines.
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Figure 1: Empirical time headway distributions detected in the same subsegments of the
ID plane for both lanes. We demonstrate how HDs measured for fast and main lanes can
be significantly dissimilar, even if the associate macroscopic quantities (see legend) are
the same.

This paper focuses on advanced methods of VHM linking a proposed probabilistic
model with corresponding traffic force-based model. From such a link, it is possible to
decipher interaction rules representing, in fact, a basic control procedure, by which the
driver changes his/her movement in a stream of other vehicles. This close relationship
between a traffic model and statistical description of vehicular microstructure allows us
to answer several questions and open problems in physics of traffic. For unidirectional
two-lane (or multi-lane) traffic flow (with a main lane and a lane for overtaking cars)
these open problems can be formulated as follows.

� Is any one-component and low-parametric distribution model able to describe head-
way distributions (HDs) in all traffic regimes, lanes, and phase segments (two-
dimensional subregions of the phase plane)?

� Anomaly 1: Why HDs measured in a fast lane differ so significantly from HDs
detected in a main (slow) lane, even if the values of the macroscopic quantities
(density %, mean speed V, intensity/flow I) are the same in both lanes (see Fig. 1)?

� Anomaly 2: Why distributions detected in a region of intermediate densities for
fast-lane vehicles usually lies outside the typical distribution families?

� Anomaly 3: Why a variance of empirical scaled clearances (for some traffic data
samples) exceeds theoretically calculated limit values (see Fig. 2)?

� Anomaly 4: Why empirical statistical rigidity of traffic data [3] occasionally exhibits
unexpected anomalies from analytical predictions (see Fig. 3)?

� Is, as presumed by many reputable traffic models (see [4]), a repulsive stimulus be-
tween succeeding cars really one and only substantial interactive impulse (together
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with a standard driving term) influencing a driver’s reaction? Or, to the contrary, is
there present any perspicuous attraction between cars as well? Are these attractive
force components detectable, in principle?

Figure 2: Empirical variance of temporal clearances (after scaling procedure) as a func-
tion of traffic density. Note that variance determined for small-density fast-lane samples
exceeds the upper limit calculated theoretically for all one-dimensional stochastic systems
of repelling particles.

In this article we aim to introduce a robust, theoretically/empirically arguable, and
statistically verified headway model (interconnected with corresponding dynamics de-
scription), which leads to satisfactory answers to the questions raised above.

2 Stochastic dynamics of vehicular stream

2.1 Fokker-Planck equation approach

In this article, one-lane traffic flow is modelled by means of a one-dimensional stochas-
tic gas of n point-like particles playing the role of vehicles. Actual state of the gas is
naturally described by positions ξ1(t) > ξ2(t) > . . . > ξn(t) and instantaneous velocities
v1(t), v2(t), . . . , vn(t) of all particles at time t. Time evolution is driven by the Langevin
acceleration equation

dvk(t)

dt
=
v0 − vk(t)

τ
+ F (ξk−1(t)− ξk(t))− γF (ξk(t)− ξk+1(t)) + Ξk(t) (1)

inspired by optimal velocity models [6]. Herein, v0 stands for the desired velocity, τ for
the relaxation time, and (v0− vk(t))/τ then represents the so-called driven term. F (x) is
the interaction force (repulsive, usually) depending on the front headway xk = ξk−1− ξk.
Stochastic background is generated by the Gaussian components Ξk(t) fulfilling the white-
noise relationships 〈Ξk(t)〉 = 0 and 〈Ξk(t) Ξ`(t

′)〉 = Dδk`δ(t − t′), where δk`, δ(t) are the
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Figure 3: Statistical rigidity in empirical traffic samples. Figure shows that, provided that
traffic density is low, the rigidity analyzed for fast lane data lies outside the theoretically
substantiated region.

Kronecker delta and Dirac function, respectively, and the constant D is the diffusion
coefficient determining the intensity of fluctuations. Symmetrizing parameter γ ∈ [0, 1]
regulates how much a given particle is influenced by an immediately following particle.
Whereas a value γ = 1 corresponds to the case of symmetrical interactions fulfilling
Newton’s Third Law, value γ = 0 corresponds to forwardly directed potentials.

The acceleration equations (1) define a stochastic process whose stationary solution is
mathematically described by a joint probability density P (x1, x2, . . . , xn, v1, v2, . . . , vn).
To find it, the afore-mentioned stochastic process have to be reformulated (see [5]) in
terms of a Fokker-Planck equation. It reads

∂P

∂t
=

n∑
k=1

{
−∂[(vk+1 − vk)P ]

∂xk
− ∂

∂vk

[
W (xk, xk−1)− vk

τ
P

]
+
D

2

∂2P

∂v2k

}
, (2)

where the periodic boundary conditions vk(t) = vk+n(t) and ξk(t) = ξk+n(t) are assumed
for a freeway of length L. The function W (xk, xk−1) = v0 + τ [F (xk)− γF (xk−1)] is intro-
duced for brevity. Provided that headways and velocities are understood as statistically
independent variables, which means that 〈xk(t) v`(t)〉 = 0 for any k, `, authors of [5]
proved that joint p.d.f. can be factorized

P (x1, x2, . . . , xn, v1, v2, . . . , vn) =
n∏
k=1

g(xk)q(vk) (3)

via velocity distributions

q(vk) =
1√
πDτ

e−
(vk−v0)

2

Dτ , (4)

and headway distributions
g(xk) = Ae−βϕ(xk)−λxk , (5)
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where

F (x) =
2

1 + γ

dϕ(x)

dx
. (6)

In this notation, the function ϕ(x) corresponds to the distance-dependent potential, β =
Dτ/2, A is a normalization constant, and λ > 0 is a scaling constant calibrated by means
of the particle density % as ∫ ∞

0

xkg(xk)dxk =
1

%
. (7)

2.2 Thermodynamic gas approach

Working with the afore-mentioned particle concept, we can introduce a thermodynamic
alternative of the system. Defining the Hamiltonian

H(x1, x2, . . . , xn, v1, v2, . . . , vn) =
n∑
k=1

(vk − v0)2

τ
+

n∑
k=1

ϕ(xk) (8)

acting on a freeway of length L with periodic boundary conditions and being exposed to
the heat bath with the temperature T, one can prove (similarly to approaches published
in [7]) that an associated steady state is described by formulas analogical to (3),(4),(5),
where D = 2kBT, kB is the Boltzmann factor, and β = 1/kBT is the stochastic resistivity.
Furthermore, one can show (see [8]) that p.d.f.

g(x) = Ae−β̂ϕ(x)−λx, (9)

with β̂ understood as an estimated value (usually significantly different from β), is a very
good approximation for headway distribution analyzed far from equilibrium. It means
that vehicular flows, as typical systems driven far from equilibrium, can be inspected
by probabilistic instruments applied usually in classical many-particle systems with sym-
metrical interactions. This property is confirmed also in the article [9].

The presented similarity between non-equilibrium and equilibrium systems opens in-
teresting perspectives for detection of interaction forces among elements in one-dimensional
driven dissipative many-particle systems such as vehicular flows.

3 Statistical description and analysis of vehicular mi-

crostructure

There are two natural ways for analysing statistical properties of one-dimensional par-
ticle ensembles. Except continuous random variables, like gaps or multi-gaps between
particles, there exists an alternative description working with discrete random variables.
Typical representatives of such variables are the interval frequencies NL representing a
number of particles occurring in the interval (ξ0, ξ0+L), where ξ0 is a position of a chosen
reference particle. Alternatively, NT means a number of particles passing a given point
(detector) during the time interval (t0, t0 + T ), where t0 denotes the time when refer-
ence particle has been passing the detector. For one-dimensional systems of point-like
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particles or for related systems, e.g. spectra of random matrices [10] the very effective
statistical tool is the stochastic rigidity ∆(L) defined as the variance of NL (or NT ).
Indeed, stochastic rigidity of traffic samples has been studied in previous investigations
[3, 11, 12, 13] and has helped to confirm/reject several intuitive hypotheses on traffic flow
(e.g. rejection of the hypothesis on short-ranged nature of inter-vehicular interactions
[12]) and to reveal many new and surprising properties of vehicular microstructure.

The both descriptions are strongly interconnected by mathematical linkages. To
briefly summarize such a relationship we remind [13] the following assertion.

Let g(x) be the p.d.f. of inter-particle gaps in an arbitrary one-dimensional many
particle system. Let us denote µk =

∫∞
0
xkg(x)dx the kth statistical moment. Provided

that succeeding gaps are i.i.d., µ0 = µ1 = 1, and µ2, µ3 < +∞, the associated statistical
rigidity of the ensemble reads

∆(L) = (µ2 − 1)L+
3µ2

2 − 2µ3

6
+ o(1), L→ +∞. (10)

It means that in systems, whose headway sequences are independent and identically
distributed, the slope (referred usually to as statistical compressibility and denoted by
χ) of linear asymptote of the statistical rigidity is equal to the variance of headways.

3.1 Theoretical limits for vehicular random variables

In the following text we assume, without any loss of generality, that all headway variables
are re-scaled so that average value is equal to one. Such an unification view brings many
advantages when interpreting data or searching for theoretical relations among statistical
quantities, which is the objective of the immediately following advisements.

Suppose that a non-negative (and scaled) random variable X is distributed via one-
parametric p.d.f.

g(x|β) = Ae−βϕ(x)−λx (x > 0, A = A(β), λ = λ(β)), (11)

where ϕ(x) ≥ 0 is differentiable on (0,+∞), ϕ(0+) = +∞, and limx→∞ ϕ(x) = 0, where
ϕ(x) and ϕ′(x) play roles of interaction potential and force, respectively. If, additionally,
ϕ′(x) < 0, then for the second non-central moment it holds µ2 ≤ 2, which means that
variance of X is in all the circumstances less or equal to one. As far as vehicular systems
are concerned, this fact can be interpreted as follows. If the dynamics of the particle
systems is driven by a strictly repulsive force (6) then variance of scaled headways must
not exceed the upper limit VAR(X ) = 1, which implies directly that statistical rigidity
∆(L) = L of Poissonian ensembles of non-interacting elements represents, in fact, the
unreachable limit for all systems with interacting elements.

This theoretical knowledge is crucial for deeper understanding statistical features of
vehicular observables, as presented below.

3.2 Empirical analysis of statistical rigidity in phase segments
and consequences

One of the well-known properties of vehicular traffic is the very strong sensitivity of
HDs to values of macroscopical traffic quantities (density %, intensity I, or mean speed
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V ). Such a sensitivity will not disappear even after the scaling procedure is applied
[15, 7, 3, 12]. For this reason it is necessary to perform all estimation procedures by
means of a segmentation [14], i.e. analyze data respective to a fixed phase segment
(a small sub-region of phase plane), where estimation procedure is significantly stable.
Typical choices for the phase segments are e.g. (%0, %0 + δ%)× (I0, I0 + δI) in ID plane or
(%0, %0 + δ%)× (V0, V0 + δV ) in VD plane.

Figure 4: Graphical visualization of composite inter-vehicular forces used for headway
modelling.

Fig. 3 we show how significantly the rigidities (analyzed in the same phase segment)
differ for different lanes. Whereas the rigidity of main-lane data samples lies below the
line ∆(L) = L, in some segments extracted from fast-lane samples the rigidity exceeds this
theoretically calculated limit. This implies, according to the above considerations, that
vehicular dynamics is not induced by inter-vehicle repulsions only. Quite the contrary,
as confirmed by accompanying investigations of the clearance variances (see Fig. 2),
vehicles moving in a fast lane are attracted to a predecessor. Moreover, this attractive
force component is very intense since it causes substantial deviations from behaviour of
systems driven by strictly repulsive forces.

Therefore, being inspired by outputs of the rigidity test we suggest (for purposes of
headway modelling) the dynamic description combining the both, attractive and repulsive
components. To be specific, a 2-component force/potential proposed may be written as

F (x) = −κ
x

+
1

x2
, ϕ(x) = κ ln(x) +

1

x
, x > 0, (12)

respectively, where κ ≥ 0 is the constant expressing a ration between repulsive and attrac-
tive components (see Fig. 4). Thus, the potentials used commonly in the transportation
literature [7, 15, 3, 16, 17, 18] represent, in fact, special (purely repulsive) variants of
(12), where κ = 0.
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3.3 Headway distributions in phase segments

The above-suggested force description implies the HD, which is described mathematically
via two-parametric family

gα,β(x) = Ax−αe−
β
x e−λx (x > 0), (13)

where α ≥ 0, β ≥ 0 represent distribution parameters. Positive constants A = A(α, β),
λ = λ(α, β) ensure the proper normalization and scaling, i.e. µ0(g) = µ1(g) = 1. Parametr
α is connected to a force constant κ via α = κ·β. Therefore, for purely repulsive potentials
it holds α = 0, whereas for potentials with a significant attractive component it holds
α > 0.

A procedure estimating values α, β from empirical traffic samples is based on standard
Minimum Distance Estimation method. It means that we minimize the L2−distance

σ(gα,β, h) = ‖gα,β − h‖ =

(∫ ∞
0

(gα,β(x)− h(x))2 dx

)1/2

between the empirical histogram-function h(x) and p.d.f. (13), i.e. we solve a optimiza-
tion problem

(α̂, β̂) = argminα≥0,β≥0σ(gα,β, h).

For comparison, an analogy using distribution functions instead of probability densities
has been applied, as well. Estimated values obtained are, however, independent on a
method used.

Figure 5: Estimated value of the force coefficient κ extracted from empirical traffic sam-
ples by means of Minimum Distance Estimation method.

To be specific, we have analyzed vehicle-by-vehicle data samples provided by The
Road and Motorway Directorate of the Czech Republic and measured during 90 days at
several segments of highway circuit R1 Prague, Czech Republic by technology of induction
double-loop detection. Extensive data record has been divided into small rectangular
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subsegments Ω(%) = (%, %+5)× (50%, 100%) (in units veh/km vs. veh/h) of the intensity-
density map (see a phase diagram in [19], page 1272). Time clearance extracted from
the phase segments is then subjected to the estimation procedure above (see Fig. 7).
Estimated values β̂ and κ̂ are visualized in (Fig. 5 and 6). As apparent, statistical
resistivity of segmented samples shows almost linear increase with traffic density, which
means that statistical self-organization of vehicular systems grows from slightly correlated
states (being close to non-correlated events in Poissonian systems) to strongly organized
states, which (at the theoretical level) converge (for resistivity approaching to infinity) to
equidistantly organized ensembles (deterministic systems). The behavior of the second
parameter show considerably more interesting features. For congested (synchronized
or wide-moving-jam flows with traffic density above 30 veh/km) the force coefficient κ
gains very low values, which means that a leading interaction term is a repulsion between
succeeding cars, which holds similarly for both lanes. However, for free-flow and transition
regimes there is a significant difference between fast and slow lanes. Whereas main-lane
vehicles are attracted to their forerunners quite weakly, for fast-lane drivers the influence
of a attractive force component prevails over a repulsive component. Such a difference
between both lanes clearly distinguishes a competitive way of driving in fast lanes from
tranquil maneuvering of cars in a main lane. It is also very clear from Fig. 6 that the
aggressive nature of fast lane maneuvering is suppressed in the condensed phase due
to the increased traffic density, in which an aggressive driving style may be dangerous.
The increase in traffic density then visibly causes synchronization not only in driving
style (where the ratio between attractive and repulsive force component is practically the
same in both lanes) but also in the stochastic synchronization in vehicular microstructure
(as the respective HDs are very similar in both lanes).

Figure 6: Estimated value of statistical resistivity β extracted from empirical traffic
samples by means of Minimum Distance Estimation method.
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Figure 7: Statistical metric σ between empirical headway and estimated (GIG) distribu-
tions. For comparative purposes, the bottom subfigure shows two functions with mutual
distance equal exactly to 1/10.

4 Conclusions

Based on analytically calculated statistical distributions of microscopic quantities in ther-
modynamic particle gas and with the help of statistical analysis of empirical traffic data,
we show that standard traffic micromodeling is able to explain the dynamics of statistical
properties in traffic systems only under certain specific conditions (e.g. traffic flow in the
condensed phase). For fast lane vehicles moving in the free traffic phase, this approach
fails. By standard traffic modeling we mean models, which are based on the assumption
that interaction forces (i.e. forces induced by changing inter-vehicle distances) between
vehicles are of a purely repulsive nature. Indeed, segmentation analysis of data samples
reveals that HDs extracted from a fast lane show significant deviations from the particle
systems controlled by repulsive force components only. These samples show unexpected
statistical anomalies, which can be explained by the presence of attractive forces in the
system.

Thus, if the particle gas is reformulated into a variant that imposes both repulsive and
attractive forces between the particles in a logical manner (see below), then the respective
equilibrium (and even non-equilibrium) states of the gas exhibit statistical anomalies
similar to those detected in empirical traffic data. By means of the above-introduced
description, it is then possible to determine under what conditions these attractive force
components are active in a given traffic system. The outlined procedure has revealed that
the attractive forces are well-founded in the case of vehicles moving in a fast lane in the
free flow phase, or in transition states between the two traffic phases. The presence of
these forces can logically be explained by a competitiveness of the drivers (often forced
by overtaking maneuver), which is suppressed when traffic goes from free to condensed
phase and which vanishes with increasing density.

In addition, the established force description strongly corresponds to the traffic reality.
This is because the attractive component decreases with the first power of the distance,
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while the repulsive component decreases with the square of the distance. This means
that for small distances the repulsive force always outweighs the attractive force. And
conversely, for long distances, the repulsive component is suppressed so that the attraction
is the main motion impulse (see Fig. 4).

Thus, it has been shown that the open problems of the area VHM (associated with
statistical anomalies in the transport microstructure) can be explained very compactly
and elegantly with the help of an idealized particle gas which is controlled by composite
force potentials. The theoretical solution of such a gas fully corresponds to the statistics
of empirical data in all segments of the phase space.

Acknowledgements

Research presented in this work has been supported by the Grant SGS18/188/OHK4/-
3T/14 provided by the Ministry of Education, Youth, and Sports of the Czech Republic
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Abstract. Jet shapes and structure observables are the key point of interest in heavy-ion
physics. As the dominant background of soft processes complicates the measurement of jet
properties, it is necessary to perform the correction of the jet properties. Machine learning
(ML) methods such as artificial neural networks (ANN), decision trees and random forests are
commonly used for the regression tasks. Thus, the observed uncorrected jet properties can be
used as the input variables for the ML models estimating the real corrected jet properties. In
this paper, we explore the potential of ML algorithms for different combinations of input jet
properties. Furthermore, we use a convolutional neural network (CNN) model to test whether
the deep learning approaches can improve the estimation performance. Today, deep learning
models are typically used for the neutrino experiments, such as the NOvA experiment [1, 2]. We
aim to improve the background correction of the jet properties in comparison to the established
area-based method.

Key words: Machine learning; Neural Networks; Decision Trees; Heavy-ion physics .

1 Introduction

Due to the overwhelmingly large background of particles not originated from hard inter-
actions, the reconstruction of particle jets in heavy ion collisions is a crucial, but also
a non-trivial task. The area-based background estimator is the standard established
method for this task [3]. The area-based method estimates the reconstructed precT from
the raw prawT value of the jet with area A ∈ R+ as

precT = prawT − ρA, (1)

where ρ ∈ R is the jet density coefficient.
In this paper, we estimate the mapping between uncorrected and true jet properties

using ML techniques. The goal is a measurement of the jet transverse momenta, mass,
radial moment and jet pTD in Pb-Pb collisions with the ML background correction and
a detailed comparison to existing correction method. In contrast to the area-based ap-
proach, ML techniques can learn the mapping of jet properties on a training dataset. For
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this purpose, a toy model that embeds jets with known true transverse momenta and true
jet shape observables in a simulated thermal heavy-ion background is used for training
the ML estimators. If needed, such data can be pre-processed by various statistical meth-
ods before the regression procedure is carried out (e.g. [4, 5, 6]). Finally, we compare the
resolution of the shallow ML estimators to the performance of deep CNN model [7].

2 Dataset

As ML techniques learn the target pattern from the training samples, the quality of the
training dataset is essential for the final performance. To create events with particle jets,
PYTHIA-generated events are embedded in a thermal background. Then, the true jet
properties correspond to the properties of the jets generated by PYTHIA [8] only, while
the background consists of all the particles from the thermal model. The toy dataset
of 3.17M samples was used, 10% of the dataset was used as the training set, while the
remaining 90% was used for the model performance evaluation. In total, 28 features
including uncorrected transverse momentum, number of tracks, area-based corrected jet
properties, transverse momentum with a relative position for a chosen number of leading
tracks, and several jet shape observables were used as the input parameters. Total un-
corrected transverse momentum, number of tracks and jet radial moment were observed
as the most influential parameters by feature importance method for decision trees and
random forests.

3 Estimators

Several ML algorithms have been used for the regression task. Decision trees, random
forests and shallow ANN were used as the shallow regression models [9]. For the decision
tree and random forest algorithms, the grid search method was used for the hyperparam-
eter optimization. The shallow ANN consists of three hidden layers with 100, 100 and 50
neurons with ReLU : R→ R0

+ activation functions defined for x ∈ R as

ReLU(x) =

{
x x ≥ 0,

0 otherwise.
(2)

The ADAM algorithm was used for network training [10]. Furthermore, a CNN was
used for comparison. A custom deep model with 15 1D convolution layers and batch
normalization layers [11] was implemented. Similarly to the shallow ANN, the ADAM
optimization algorithm and ReLU activation functions were used for the CNN model.
We tested additional DL models including recurrent neural networks (RNN) as well, but
the CNN estimator showed the most promising performance.

In [3], it has been already shown that it is possible to estimate the true jet transverse
momentum with higher performance than with the established methods. In this paper,
we extended the one parameter regression and performed a two-parameter regression task
with another jet properties, namely jet mass, radial moment and pTD.
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4 Comparison of the estimators

In this section, we compare the results for the different estimators on three 2D regression
tasks. In addition to the transverse momentum correction, we performed the jet shape
correction for jet mass, angularity and pTD. Only samples with ptrueT > 3 GeV/c were
used for the training. This cut-off reduced the number of training samples from 317K to
207K.

4.1 2D regression for pT and jet mass

Firstly, we present the comparison of the estimators for pT and jet mass 2-dimensional
correction. We plot the residual distribution as a direct measure for the resolution and
the overall bias of an estimator. In Figure 1, we compare the residual plots for area-based
approach, decision tree, neural network and CNN estimators.

(a) Area-based (b) Decision Tree

(c) Neural Network (d) CNN

Figure 1: pT residual plots

It can be seen that the new ANN and CNN background estimators work similarly for
different ptrueT values. Furthermore, neural network and CNN estimators clearly provide
better resolution for pT estimation compared to the other estimators. However, it is hard
to directly compare the resolution between neural network and CNN estimator. Thus,
we plot ptrueT projections for 60 < ptrueT < 80 GeV/c in Figure 2. The estimated standard
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deviation for neural network is slightly lower, so the DL model has not improved the
performance for pT correction.

(a) Neural Network (b) CNN

Figure 2: pT residual plot projections for 60 < ptrueT < 80 GeV/c

(a) Area-based (b) Decision Tree

(c) Neural Network (d) CNN

Figure 3: Jet mass true versus predicted plot

In Figure 3, we plot the predicted jet mass versus true jet mass values. It is clearly
seen that all the ML estimators exhibit a better performance compared to the area-based
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correction method. However, the CNN model does not perform observably better than
the ANN estimator.

4.2 2D regression for pT and pTD

The next step of the project is testing the estimators for 2-dimensional pT and pTD cor-
rection. In this case, the CNN has turned to be unusable as it did not converge at feasible
time. Figure 4 present the performance of the other models depicted in the true versus
predicted pTD plots. The shallow models perform superior compared to the area-based
method. We observe promising performance especially for the random forest estimator.
The residual plots for depicted correction methods are presented in Figure 5. It is im-

(a) Area-based (b) Decision Tree

(c) Random Forest (d) Neural Network

Figure 4: pTD true versus predicted plot

mediately seen that the pTD residuals are condensed around zero with no significant
dependence on pTD

true values for the random forest estimator. This indicates promising
potential of ML techniques for pTD correction.

4.3 2D regression for pT and jet angularity

Finally, we observe the performance of our models on 2-dimensional pT and jet angularity
correction. Similarly to the pTD correction, the CNN model did not converge and ANN
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(a) Area-based (b) Random Forest

Figure 5: pTD residual plot

model performed rather poorly. In Figure 6, we observe that the resolution of the random
forest estimator is significantly better compared to the resolution of the ANN model.
However, the performance of the ML methods is not as superior as for the previous pTD
correction.

(a) Area-based (b) Decision Tree

(c) Random Forest (d) Neural Network

Figure 6: Jet angularity true versus predicted plots
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5 Summary and conclusion

In this paper, we explored the potential of several ML methods for correction of several
jet properties. We defined several ML estimators and compared their performance to the
performance of the established area-based approach. Furthermore, we built deep CNN
model to explore the possible use of DL models for jet shape correction. For pT , jet mass,
pTD and angularity, the use of ML techniques has lead to superior performance compared
to the established area-based approach. We have observed promising performance when
using random forest and neural network estimators. Especially for pT & pTD correction,
shallow ML techniques lead to huge improvement of resolution and overall bias.

Furthermore, we have not seen any signs of improvement when using DL models. For
pT & jet mass 2D correction, the tested deep CNN model has not outperformed shallow
neural network. In addition, it could not be used for pT & pTD and pT & jet angularity
correction, as it failed to converge. Thus, the shallow models outperformed the tested
DL model for all the correction tasks.
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Abstract. Sentinel-2 mission, developed and operated by European Space Agency (ESA), is
designed to provide high-resolution image data over land and coastal waters, which are further
used for a multitude of applications, such as agricultural monitoring. Acquired data by the
Sentinel-2 satellite are publicly available under the Copernicus Programme and can be accessed
straightforwardly. In addition, we are provided with annotated maps of agricultural fields, which
can be used as ground truth data. These maps include the location and additional specification
of fields and crops grown on the field. In this paper, we are interested in field crop classification
within the specified region. Aforementioned Sentinel-2 satellite image data and field labels are
therefore combined to provide a dataset. This dataset can be then utilized by the classifier. For
this cause, convolutional neural networks are used, as they have shown outstanding results of
image classification over the past years.

Key words: convolutional neural networks; Sentinel-2; field crop classification.

1 Introduction

Machine learning methods, and deep learning methods as their subset, are nowadays used
in various fields of study. Moreover, utilization of deep learning techniques is day by day
on its rise. With multitude of deep learning algorithms and techniques, it is more than
fitting for them to be applied on various types of data. Convolutional neural networks
(CNNs), as a deep learning algorithm, have successfully been used for analyzing visual
image data over the past years. In our case, satellite imagery can be utilized as a great
visual data source. As some fields struggle with a lack of data, satellite imagery does not.

Sentinel-2 satellite, a space mission from the Copernicus Programme developed and
operated by European Space Agency (ESA), provide wide-swath, high-resolution, multi-
spectral visual image data. In addition to the satellite images, agricultural maps provided
by State Agricultural Intervention Fund (SAIF) offer various information about fields and
crops grown on the field. Mentioned maps cover the area of the Czech Republic within
the year 2018. This can be utilized as a ground truth data for supervised learning.

61



62 A. Novotný

In this paper, we present a proof of concept of field crop classification based on
Sentinel-2 satellite image data and agricultural maps. The procedure combines multi-
temporal multi-spectral Sentinel-2 data and geographical location and crop grown on the
field.

2 Data Description

The dataset, which is later used to feed into CNN, is created from publicly available
Sentinel-2 data and agricultural maps provided by SAIF.

2.1 Sentinel-2

Sentinel-2 mission is composed of two satellites (Sentinel-2A and Sentinel-2B) orbiting
Earth in the same orbit and phased by 180◦. Single satellite revisits the Equator every
ten days so both satellites give a high revisit frequency of 5 days at the Equator. This
frequency is even shortened for higher latitudes. The mission land surfaces from latitude
56◦ south to 84◦ north, coastal waters, and all of the Mediterranean Sea.

Optical sensor gives 13 bands ranging from visible spectrum to near infrared (NIR)
and short wave infrared (SWIR). Four of the bands have the resolution of 10 meters, six
bands of 20 meters and three bands of 60 meters [1]. The full specification of spectral
bands can be seen in the figure 1. In addition to the 13 bands, another indices, which
use the bands, can be derived, such as normalized difference water index (NDWI) or
normalized difference vegetation index (NDVI) etc. to obtain additional information.

Figure 1: Thirteen spectral bands of Sentinel-2 satellite [1].
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The Sentinel-2 satellite images come in three different levels of pre-processing. Level
2-A offers data in form of tiles with atmospheric corrections in form of bottom-of-
atmosphere reflectance in cartographic projection. Each tile covers the area of 100× 100
km2 and is octorectified into UTM/WGS84 projection [1]. The Level 2-A also contains
cloud masks. The area of Czech Republic is covered by more than ten tiles.

The Sentinel data can be accessed and downloaded via the Copernicus APIs. The
OpenSearch API gives information about each tile, including dates. This is later utilized
to download tiles by OData API. In addition to the Sentinel-2 images, the framework
can be easily extended to include both Sentinel-1 and Sentinel-3 images.

2.2 Agricultural data

We are provided with almost 600 thousand samples of fields in Esri shapefile format.
These fields cover the area of the Czech Republic and were obtained in 2018. Each field
is annotated with its own metadata which includes unique ID, geographical polygon,
bounding box and area in UTM/WGS84 projection and crop grown on the field.

The overall number of crops grown over the area is 14, namely annual forage crops,
annual fruit and vegetable, flax and hemp, hopyards, maize, other crops, permanent fruit,
permanent grassland, rapeseed, sugar beat, summer cereals, vineyards, winter cereals and
not classified. The counts of each crop can be seen in the figure 2.

Figure 2: Counts of crops grown in the Czech Republic in 2018.
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2.3 Dataset

Combined dataset constists of 593,787 multi-temporal (up to 36 timestamps per year)
multi-spectral (13 + additional indices) images with different size, as each field has dif-
ferent height and width. If needed, such data can be pre-processed by various statistical
methods (e.g. [2])
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3 Convolutional Neural Network

The created dataset can be utilized by CNNs. The goal is multi-class classification into
14 classes. For the training of the CNN, categorical cross-entropy loss function is used.
As the dataset is quite unbalanced, this problem needs to be addressed. This can be
achieved either primarily by weighing the loss function (based on counts) or secondarily
by even excluding some classes (e.g. flax and hops class has only hundreds samples). As
the dataset is quite large, on-the-fly generator during the training is incorporated into
training. This is accompanied by data augmentation.

In order to prevent overtraining, the dataset is further divided into training, validation
and test set. Metrics observed both during validation and testing phase are accuracy,
confusion matrix, receiver operating curve (ROC) and area under ROC (AUC).

For all of the mentioned, Python 3.6.8 within the Tensorflow 2.3.0 framework deployed
on GPUs are used.

Early results of classification are quite promising. The initial classification was per-
formed on only one timestamp (in August 2018) and on narrowed dataset consisting of
only 40 thousand images. The used architecture is ResNet18. The test accuracy was over
60 % and test AUC 80 %.

4 Conclusion

In this paper, we presented a proof of study of field crop classification based on two
data sources, namely multi-temporal multi-spectral Sentinel-2 satellite image data and
annotated maps of Czech agricultural fields in 2018 by SAIF. The initial results, which
are expected to be improved by far, were measured by test accuracy and AUC, yielding
over 60 % and 80 % respectively.

Acknowledgements

This work was supported by the grant SGS18/188/OHK4/3T/14 (MEYS) and CAAS
EF16 019/0000778 (MEYS/EU).

References

[1] A. Gatti, A. Bertolini, Sentinel-2 products specification document, available online
(accessed September 2, 2020) https://sentinel.esa.int/documents/247904/

349490/S2_MSI_Product_Specification.pdf, (2015).
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Abstract. Investment opportunities are currently valuated via metrics and algorithms formed
by the economical theory. The majority of investors still values projects with the net present
value (NPV) method, which takes into account the time value of money and gives solid re-
sults for simple projects with minimal requirements on mathematical skills. More complicated
projects, which are in this contribution thought of as projects with a substantial degree of in-
ner uncertainty and with an existence of further managerial decisions, can be valuated by the
real options analysis (ROA). This method comes from an imperfect analogy to financial option
valuation and it recognizes the value of the ability to change the course of a given project.

My contribution presents a new valuation framework for projects, which are understood as
stochastic decision problems. This framework incorporates the NPV and ROA methods, re-
laxes their assumptions and allows for decades of research in the field of stochastic decision
theory (SDT) to be used. The main contributions of the new framework are: ability to in-
corporate multiple sources of uncertainty, usage of any distribution for uncertainty modeling,
ability to conveniently incorporate Bayesian learning, ability to model user’s approach to risk
and ability to model any type and number of managerial actions.

The new framework significantly expands the class of projects that can be reasonably valu-
ated and can be understood as a unification of project valuation in business management.

Key words: Real Option Analysis, Stochastic Decision Theory, Time Value of Money, Risk
Aversion, Black-Scholes Model, Power Industry, Approximate Dynamic Programming.

1 Introduction

Derivative market as an idea of hedging and taking risk for a fee can be traced back
thousands of years back into the human history [3]. Financial options as a part of
the derivative market allow the holder to buy (or sell) given asset in the future for a
predetermined price. The holder of the option can decide to use his option (exercise it)
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or not to, based on the circumstances (predominantly if the price evolved in a favorable
way or not).

The ideas of option trading appear as early as the 17th century in Netherlands [4].
However, first publications about the logic of their valuation appear with the beginning
of the early 20th century with Bachelier [5] and Bronzin [6]. Later, in the 1970’s a
new wave of option valuation research emerged, culminating in the Nobel-prize-winning
Black-Scholes valuation algorithm [7] (BSM), which is a standard option valuation tool
today.

The researcher’s focus on the ideas about option valuation resonated within the com-
munity and lead to the concept of Real Option Analysis (ROA) for project valuation,
term coined by Stewart Myers in 1977. The ability of buying and selling an asset in the
future has value, thus as analogy, having an option to invest in a project now or later
(timing option) has also some value.

The basic logic of simple options in project management was improved through the
decades and many articles and books were published on the topic of ROA since.

When studying the current state of ROA, one realizes that there exist three classes
of authors that interpret the logic of ROA in various level of analogy with the BSM
model. First group, which I call Economical textbook authors (i.e. [10]) presents ROA
as a clean analogy with the financial options. Second group, where I consider Guthrie
[8] to be the most influential, focuses on introduction of new possible options within the
project while keeping the core of BSM model, namely the assumption of non-existence of
arbitrage. The third class, to which also the father of the name ROA (Myers) belongs to,
understands ROA as a purely philosophical idea about the project management. Third
class recognizes that options have value, but does not elaborate on how to compute it.

In this contribution, I will be focusing on the second class of authors, where my main
inspiration is Graeme Guthrie [8].

When a person that is educated in the theory of decision making under uncertainty
reads the ideas of ROA, it is hard to not realize the potential applicability of the stochastic
decision theory (SDT) on the outlined problems in ROA publications.

In this contribution I want to argue that problems and ideas outlined in books of ROA
can be interpreted in terms of SDT. This interpretation relaxes some ROA assumptions
and allows for solving more complex problems while preserving the economical truths of
a given project.

The newly developed project valuation technique is demonstrated on the problem of
gas power plant valuation. The actual computation is due to its complexity computed
by the value iteration algorithm, coming from the Approximate Dynamic Programming
(ADP) theory.

2 ROA in SDT

The core of ROA is the idea that options (possible future action) have value. The un-
certainty that encompasses all ventures will result in some realizations, determining its
realized profitability. The ability to counter negative realizations increases the expected
realized profitability by lowering the losses, while the ability to exploit the positive real-
izations increases the profit when ”good times” are realized.
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When a scholar that is educated in the theory of decision making under uncertainty
reads the publications about ROA, it is hard to not see the similarities. The authors
of stochastic decision theory like to point out, that basically every human interaction
with the environment can be understood as decision making under uncertainty, however,
I argue, that SDT as a framework fits for ROA problems neatly.

Two publications that this contribution is inspired by are Graeme Gutrhie - Real
Option Analysis [8] and Alexander Vollert - A Stochastic Control Framework for Real
Options in Strategic Evaluation [11]. Guthrie presents a well structured list of different
options project might have and offers a reasoning behind probability modeling by binomial
trees, which is coming from the law of one price from economical theory. Vollert then
goes deep into stochastic differential equations and presents new structures for thinking
about real options.

Mr. Guthrie and his approach is well explained and build on a firm ground, however
it is not build for a complex problems, which he himself acknowledges. I also believe that
the findings of Vollert are presented in much more complex mathematical language than
the majority of practitioners is able to understand.

These two statements prepare the ground for the reason behind this contribution of
mine. I strive to bring a valuation algorithm that allows for solving a rather complex
problems, with unified structure, but with simple steps, that can be understood by the
managers, not necessarily educated in deep mathematics.

I also want to accent the importance of respecting the economical truths important
for project valuation, namely the time value of money and the risk aversion of investors.

2.1 ROA in terms of SDT

The Real Option Analysis focuses on valuation of projects with high uncertainty and pos-
sible management interventions. I argue that the structure of Markov decision processes
(MDPs) is ideal for such modeling.

Definition 1 (Markov Decision Process) Markov decision process is a framework
that can be represented by 3 sets and two functions:

� Set of time epochs - T;

� Set of states - S;1

� Set of actions - A;2

� Reward function of transition from one state to another - r(st|at, st−1);

� Transition probabilities governing the transitions from one state to another
- p(st|at, st−1).

Options are in this structure represented by the action set A, and as a result there is
no need for distinction like ”time option” or ”scale option”.

1Possibly conditioned on the time epoch.
2Possibly conditioned on the state.
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The value of a project is then determined by the value function in the current (zero)
state of the project. This value can be in theory computed by the iterative process
starting at the problem horizon with the Bellman equation:

V (st−1) = max
at∈A

∑
st∈S

p(st|at, st−1)[r(st|at, st−1) + V (st)]. (1)

The problem with Bellman equation is the computation complexity, where we require
|T| ∗ |S| ∗ |A| ∗ |S| computations, where the cardinality of state set |S| is usually large.
Another related problem is that this approach needs to assume discrete state spaces.
Continuous spaces can be made discrete but that brings us back to the problem with
computational complexity.

The problem of complexity of dynamic programming is known as a ”Curse of dimen-
sionality” [9] and it is approached with the theory of ADP.

2.2 Approximate dynamic programming

The theory of ADP copes with the complexity problem of classical dynamic programming
by accepting that the value functions, or evaluation of policies cannot be computed
exactly, but can be only approximated.

ADP can be divided into two classes, policy and value iterations. We will be focusing
on value iteration, since I believe it fits more the project valuation problems.

The idea of value iteration starts with having some value function estimate which is
updated based on the samples of possible future states.

In this contribution we focus on the ADP algorithm, where we model the value func-
tion in each time epoch vt as a linear model with basis functions φi,t and parameters
θi,t:

vt(s) =
∑
i

θi,t · φi,t(s), (2)

where the basis functions reflect some heuristically important value of each state. For
example the difference between price of power and sum of gas and CO2 price, or indicator
function of being and not being in debt.

The update of vt then unfolds as follows:

� Sample of states in time t is generated;

� In each of these states the optimal action is chosen (based also on the approximation
of the following value function vt+1);

� The action is actually taken, reward is obtained and the pair st - r(st+1) is saved.

� Based on all state-reward pairs a fit of linear model is made, resulting in the new
parameters θi,t.

By updating the value functions in different time epochs (this contribution uses up-
dating from the horizon) we get more and more precise values to the actual value function
representing the expected reward, in our case the cash equivalent in time epoch 0.
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2.3 Preserving economical truths

While creating the algorithm for project valuation one cannot forget the objective eco-
nomical truths that need to hold if this algorithm has the ambition to be ever used by
practitioners. In other words the concepts of time value of money and risk aversion of in-
vestors needs to be respected. Luckily, the SDT theory is prepared for the interpretation
of both of them.

The time value of money can be easily approached by the introduction of a discount
factor (in SDT denoted as γ) if we discount the future cash flow with the same interest
rate for money that we borrow as for those we earn in surplus.

This contribution goes a step further and discounts the cash flow with the rate given
by the current state of debt or cash surplus of the company.

The second economical truth is the risk aversion of investors. Investors are usually
not driven by the clear expected values as defined in mathematics as was shown multiple
times in studies like [12]. The SDT is again a step ahead an offers an alternation of the
search for the maximal reward in Bellman equation. It is called utility theory and instead
of maximizing the expected reward, we are maximizing the expected utility with each
optimal action choice.

The problem of obtaining the transformation function that pairs rewards with utility
is out of the scope of this contribution and it is discussed in [9].

3 Valuation of gas power plant

In the last section of this contribution I would like to illustrate the application of the
introduced framework on a real project valuation problem. Inspired by Graeme Guthrie
and with the gained knowledge from the power industry, I would like to value a gas power
plant.

The current price of gas, CO2 allowances and electric power in EUR are: 23, 9 and
40, after unit normalization and assumption of some reasonable power plant efficiency.
For each MW of installed capacity there is a 3 EUR maintenance cost (lowered to 1 EUR
when the plant is mothballed). There is a possibility to build up to two 200MW blocks
of the power plant, where each costs 65M EUR. The cost of mothballing is 1M EUR.

One time epoch is set to be one month and the lifespan of the power plant is assumed
to be 25 years.

There are 6 different actions in total, some of which are restricted:

� Do nothing - available in all times and states. Does not change the power plant
state.

� Run - Run the installed capacity. Available when some capacity has already been
built.

� Run and build - Run what is installed and build a new stage. Available only when
the capacity is 200MW.

� Do not run and build - Do not run and build new stage. Unexpected behavior from
a heuristic perspective. Not allowed with 400MW installed capacity.
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� Mothball - Mothball the plant. Not available when already mothballed or when
there is nothing to mothball.

� Sell - Sell the power plant. Allowed only when there is some installed capacity to
sell.

These actions represent the following option types as described by Guthrie:

� Timing option - ability to postpone the investment.

� Switching option - I can run the plant or not. I can mothball the plant.

� Scaling option - I can build more than one block.

� Abandonment option - I can sell the plant.

The prices of power, CO2 and gas are understood as continuous variables and they
are assumed to follow a lognormal random process with volatilities chosen as educated
guess from looking at the actual market prices.

Furthermore, to show how is the new model able to incorporate multiple sources of
uncertainty, we are adding a variable representing government policy that is supposed
to reflect the subsidies for the renewable energy. With higher support of renewable energy
the volatility on the power market rises.

This government policy variable has 5 levels, ranging from no support to maximal
support and each new stage increases the volatility of power prices by 20%.

By using the ADP, one does not obtain an optimal strategy, only the parameters of
the individual value functions.

In the end of this contribution, I would like to present the results of a Monte Carlo
simulation where in both cases the strategy follows the approximation of optimal decision
making based on the value function representation. All actions listed above are allowed
in the first case, whereas the second simulation does not allow the plant to stay idle, whet
it has some installed capacity.
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2 ÚTIA, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Email: brozoant@fjfi.cvut.cz

Abstract. Blind image deconvolution aims at recovering sharp image from a blurred one
while the blur is unknown. It is a highly ill-posed problem requiring proper regularization,
and variational Bayesian inference is often used to tackle it. Hierarchical Bayesian models can
represent well both sharp image and blur, and variational Bayes can be used to approximate
posterior distributions. While Variational Bayes offers easy optimization, it is very restrictive
when it comes to the choice of prior distributions. For example, if the blur is spatially variant,
finding a solution under this framework would be very complicated. Higher flexibility could
be achieved via direct numerical optimization of evidence lower bound, which does not require
the distributions to be from the conjugate system. These two methods - Variational Bayes and
ELBO optimization - will be compared in this paper.

Key words: blind image deconvolution, variational Bayes, ELBO, Vadam, variational infer-
ence.

1 Introduction

Images can be degraded in many ways, for example by blurring, noise or low resolution.
In this paper we focus on blurring which may be caused by relative motion of a camera
and a scene, turbulence in the atmosphere or wrong focus. Assuming spatially invariant
blur, the blurred image can be represented as a convolution of a blur kernel k and an
underlying sharp image x

d = k ~ x+ n, (1)

where n is noise. The deconvolution is basically an inverse operation to convolution with
the aim to obtain the sharp image. The deconvolution is called blind when not only the
sharp image but also the blur is unknown. The task is then to minimize ||d − k ~ x||
with respect to both x and k. The problem is highly ill-posed, so further regularization is
necessary. The Bayesian approach is based on prior information which makes it a suitable
tool for this task.
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In the first section, variational Bayes (VB) will be introduced, together with the evi-
dence lower bound and its optimization. Consequently, a hierarchical model representing
the blurred image will be constructed and three algorithms for blind deconvolution will
be presented, where one of them uses Vadam optimiser. Lastly, these three algorithms
will be compared on a test image with gaussian blur.

2 Method

The problem of blind image deconvolution is highly ill-posed and prior information is
needed to successfully recover the underlying sharp image. The two most common
Bayesian approaches used for blind image deconvolution are MAP (maximum a pos-
teriori) approach and variational Bayes method. The first mentioned was deeply studied
by Levin et al. in, for example, [1]. Although it is often used, it usually requires some ad
hoc steps to find the right solution.

Variational Bayes inference uses an approximation of posterior which makes the prob-
lem tractable for common distributions. Fergus et al. suggested to use this approach
for blind image deconvolution in [2] in the same year with Molina et al. [3]. A brief
explanation of this method follows.

The variational Bayes method is based on the Bayes theorem

p(x,k|d) =
p(d|x,k)p(x,k)

p(d)
,

where p(x,k|d) is a posterior distribution, p(x,k) = p(x)p(k) is a prior distribution
and p(d|x,k) is a distribution of the original image, therefore has the same form as the
distribution of the noise from (1). If we assign prior to each variable and get the joint
posterior distribution, marginalization is needed in order to find the estimates of the
sharp image and the blur kernel. Variational Bayes overcomes the marginalization by
approximating the posterior by q(x,k|d) for which holds

q(x,k|d) = q(x|d)q(k|d). (2)

The model is usually hierarchical, and it is assumed that each random variable has the
property (2). Let denote θ all random variables in the model. Kullback-Leibler (KL)
divergence of q from p is defined as

KL (q(θ|d) ‖ p(θ|d)) = Eq(θ|d)
[
ln
q(θ|d)

p(θ|d)

]
, (3)

where Eq(θ|d) [.] denotes expected value with respect to q(θ|d). Then, approximations of
the posteriors that minimize KL divergence from the real posteriors are of following form

q(θi|d) ∝ exp
[
Eq(θ\i|d) [ln p(θ,d)]

]
,

where θ\i means all variables in θ except for i-th one. When the priors are chosen to
be conjugate, forms of the approximations of posteriors are known and the only task left
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is to find values of parameters of the distributions. When it is not the case, another
approach is usually required.

Lets rewrite KL divergence into another form

KL(q(θ|d)||p(θ|d)) =

∫
q(θ|d) ln

[
q(θ|d)

p(θ,d)

]
dθ + ln p(d) = −L+ ln p(d). (4)

KL divergence is always non-negative, therefore, L in equation (4) is lower bound on
ln p(d). It is called evidence lower bound (ELBO). The goal of VB is to minimize the KL
divergence which is equivalent to maximizing ELBO. From (4) we can see that

L = Eq(θ|d) [ln q(θ|d)− ln p(θ,d)] . (5)

Negative value of (5) can be minimized, for example, via stochastic gradient descent, but it
requires the expectations w.r.t. q(θ|d) to be known in closed forms so that it is possible to
take their derivatives. When it is not the case, some expected values can be approximated
with a reparametrization trick as was suggested for variational autoencoders in [9]. Let’s
say, that it is hard to find an expected value of some function f(θi) w.r.t. q(θi|d) and
that it is possible to reparametrize θi = g(m, ε), where m are parameters of q(θi|d) and
ε is a random variable with distribution p(ε), which is easy to draw samples from. Then

∇mEq(θi|d) [f(θi)] = ∇mEp(ε) [f(g(m, ε))] ≈ 1

L

L∑
l=1

∇mf(g(m, εl)),

where ∇m is gradient operator with respect to m and εl is l-th sample of ε.
The strength of ELBO optimization lies the fact that it can be used for any choice of

approximation of posterior and, therefore, it could be more flexible than VB approxima-
tion.

2.1 Priors

The choice of priors for blind image deconvolution is crucial, especially when it comes
to an image prior. Wipf and Zhang in [4] argue that it is more important for the image
prior to discriminate the no-blur solution (i.e. sharp image is estimated as the blurred
one and kernel as δ-function) than to reflect the real image statistics. An image is usually
assumed to be smooth, therefore, models promoting sparsity in its gradients ([5], [6]) are
used.

It is favourable to rewrite (1) in the matrix form

k ~ x+ n = Kx+ n = Xk + n,

where x is vectorized image of size n×p, k is vectorized blurring kernel of size 2s+1×2s+1,
K and X are convolution matrices in block Toeplitz form, where blocks are Toeplitz
matrices, constructed from k and x, respectively. The distribution of noise is assumed
to be normal with zero mean and precision matrix ωI, where I is an identity matrix and
ω is a hyperparameter, therefore, distribution of observation d is normal with mean Kx
and each pixel has precision ω. The prior distribution of ω was chosen to be gamma with
shape γ0 and rate η0.
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ARD (Automatic Relevance Determination) model [5] was chosen for the image prior.
The image is assumed to be piecewise-constant, which is represented by assumption of
sparse gradients in the image. The ARD model achieves sparsity by combination of
normal and gamma distribution

∇x|τx ∼
∏
i

N
(
0, τ−1xi

)
,

τxi ∼ G (αx0, βx0) ,

where ∇ denotes derivative operator, i.e. ∇x is a vector of horizontal and vertical dif-
ferences, and τxi is precision of i-th difference in image. This model is also called scale
mixture of gaussians which is considered to be super-gaussian prior [7].

The blur kernel’s prior distribution was chosen to be normal with common precision
for all its pixels

k|τk ∼ N
(
0, τ−1k I

)
,

τk ∼ G (αk0, βk0) .

2.2 Posteriors

The combination of gamma and normal distributions makes it extremely easy to infer
the posterior distributions. As they are conjugate, the posteriors of x and k are normal

q(x|d) ∼ N (µx,Σx) ,

q(k|d) ∼ N (µk,Σk) .

The posteriors of the precisions were chosen to be Dirac δ-functions with non-zero values
in τ ∗x , τ ∗k and ω∗. After some manipulations we get that

Σx =
(
Eq
[
ωKTK

]
+∇Tdiag(Eq [τx])∇

)−1
,

µx = ΣxEq
[
ωKT

]
d,

Σk =
(
Eq
[
ωXTX

]
+ Eq [τk] I

)−1
,

µk = ΣkEq
[
ωXT

]
d,

τ ∗x =

(
1

2
Eq
[
xT∇T∇x

]
+ βx0

)−1(
αx0 −

1

2

)
,

τ ∗k =

(
1

2
Eq
[
kTk

]
+ βk0

)−1(
(2s− 1)2

2
+ αk0 − 1

)
,

ω∗ =

(
1

2
Eq
[
dTd− dTKx− xTKTd+ xTKTKx

]
+ η0

)−1 (np
2

+ γ0 − 1
)
, (6)

where Eq[.] denotes expected value w.r.t. q(θ,d).

2.3 Iterative Variational Bayes algorithm

The first algorithm to be presented in this paper is the iterative variational Bayes (IVB)
algorithm used in, for example, [10]. This algorithm utilizes the fact, that the forms of the
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posterior distributions are in the case of conjugate priors known, and we only need to find
the values of their parameters. The expressions for the parameters form a set of linear
equations that need to be solved to minimize the KL divergence of the approximation
from the real posterior.

The covariance matrix of the image posterior is usually ill-conditioned, therefore, it
is assumed to be diagonal. The expression for the mean of the image posterior requires
an inverse of the covariance of the image. For higher accuracy, the estimate of µk is ob-
tained with conjugate gradients instead of using the diagonal covariance. The pseudocode
is written below as Algorithm 2. This algorithm is basically E-M algorithm, getting es-
timates of parameters of normal distributions corresponds to E-step and recomputing
τ ∗k , τ

∗
x and ω∗ is M-step.

Algorithm 4: IVB

1 Initialize all variables
2 While not converged

Update Σx as an inverse of diagonal matrix from ωKTK +∇Tdiag(τ ∗x )∇

Update µx as a solution of
(
ωKTK +∇Tdiag(τ ∗x )

)
µx = ω∗KTd

Construct Eq [X], Eq
[
XTX

]
and Eq

[
kTXTXk

]
from µx, Σx, µk, Σk

Update Σk and then µk according to (6)

Update τ ∗x , then τ ∗k and then ω∗ according to (6)

Return image estimate µx and blur kernel estimate µk.

2.4 ELBO optimization

In order to compare ELBO optimization and VB, a second algorithm will be proposed.
Parameters of the posterior distribution of k will be estimated via stochastic gradient
descent and the reparametrization trick will be used. The function to be minimized
w.r.t. Σk and µk is

Eq [−p(d|x,k, ω)− p(k|τk) + q(k|d)] . (7)

The first element of (7) contains the most complicated expected value in the whole model:
Eq
[
xTKTKx

]
. To approximate this expression, the reparametrization trick was used

and k was repametrized as follows

k = µk + Σ
1
2
k ε,

ε ∼ N (0, I) .

Covariance matrix Σk is estimated as a product of two matrices SkS
T
k , which means that

the covariance matrix is symmetric and makes the reparametrization easier. The pseu-
docode of the IVB algorithm with the two estimates obtained by ELBO maximization,
named ELBO algorithm, is below as Algorithm 2.
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Algorithm 5: ELBO

1 Initialize all variables
2 While not converged

Update Σx as an inverse of diagonal matrix from ωKTK +∇Tdiag(τ ∗x )∇

Update µx as a solution of
(
ωKTK +∇Tdiag(τ ∗x )

)
µx = ω∗KTd

Construct Eq [X], Eq
[
XTX

]
and Eq

[
kTXTXk

]
from µx, Σx, µk, Σk

For 1000 steps

Generate new ε ∼ N (0, I) and get gradients of (7) w.r.t. µk and Sk

Update µk, Sk using Adam optimiser

Update τ ∗x , then τ ∗k and then ω∗ according to (6)

Return image estimate µx and blur kernel estimate µk.

2.5 Vadam

Vadam (Variational Adam) is an optimizer proposed by Khan et al. in [8] for distributions
from exponential family. It was inferred to maximize ELBO using natural gradient and
samples from posterior distribution are used to approximate the value of the gradient. In
the case when the posterior distribution is normal it is possible to get the estimate of the
variance right from the update of the mean, so it is not necessary to construct another
gradient to find its value. Assuming the prior distribution of parameter θ to be normal
with zero mean and precision τ and posterior to be normal with mean µ and variance σ,
its (t+ 1)-th update is given as follows

ut+1 = γ1ut + (1− γ1)
(
g
(
θ(t)
)

+ τ̃µt
)
,

st+1 = γ2st + (1− γ2)ĝ
(
θ(t)
)2
,

ût+1 = ut+1

(
1− γt1

)−1
,

ŝt+1 = st+1

(
1− γt2

)−1
,

θt+1 = θt − αût+1

(√
ŝt+1 + τ̃

)−1
,

where θ(t) is a sample taken from the estimate of the posterior N (µt, diag(σt)), the
variance σt is given as (Nst + τ1)−1 and τ̃ = τ/N , where N is a number of measurements
(pixels). Vadam optimiser will be used similarly as Adam optimizer in Algorithm 2. This
algorithm will be called ELBO-Vadam and is presented here as Algorithm 2.

3 Experiments

The three algorithms were tested on synthetic data. A cut-out from Lena image [11] was
blurred with a gaussian kernel, and white noise was added to the degraded image. Signal
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Algorithm 6: ELBO-Vadam

1 Initialize all variables
2 While not converged

Update Σx as an inverse of diagonal matrix from ωKTK +∇Tdiag(τ ∗x )∇

Update µx as a solution of
(
ωKTK +∇Tdiag(τ ∗x )

)
µx = ω∗KTd

Construct Eq [X], Eq
[
XTX

]
and Eq

[
kTXTXk

]
from µx, Σx, µk, Σk

For 1000 steps

Generate new ε ∼ N (0, I) and get gradients of (7) w.r.t. µk

Update µk using Vadam optimiser and Sk as (Nst + τ ∗k1)−1/2

Update τ ∗x , then τ ∗k and then ω∗ according to (6)

Return image estimate µx and blur kernel estimate µk.

to noise ratio (SNR) was set to 40dB in this case. Together with blind deconvolution,
non-blind was performed on the blurred image with the estimate of blurring kernel as it
often returns more accurate results. The image was reconstructed using matrix inversion
of K with a small value added to its diagonal.

The first two rows of Figure 1 show estimates of the blurring kernel, sharp image
and the results of non-blind deconvolution returned by Algorithm 2 and Algorithm 2,
respectively. In both cases, it is assumed that a covariance matrix of k is diagonal. The
kernel estimate found by Algorithm 2 is symmetric and similar to the correct one, and
the estimate of sharp image seems to be sharper than the degraded image. The blurring
kernel found by Algorithm 2 looks almost the same as the one found by Algorithm 2, but
the image estimate does not seem to be as smooth as the one of Algorithm 2, although
it is still sharper than the blurred one. In both cases, there are apparent constant areas
in the image estimates caused by the ARD prior on the differences. Both images found
by non-blind deconvolution show improvement in comparison with the blurred image.

The next two rows of images of Figure 1 (the third and fourth) show results found
by Algorithms 2 and 2 assuming that the covariance matrix of k is full. In this case, the
estimates should be closer to the original values because there is one less approximation
than in the case of diagonal matrix, but it is not the truth for the Algorithm 2. The
algorithm was not able to reconstruct the image well and the estimate of blurring kernel
is far from reality. This behaviour happens because only one sample from the posterior is
taken in the reparametrization trick and that is not enough to approximate full covariance
matrix. The solution to this problem is to draw more samples and estimate the gradient
as an average, but it is computationally too expensive.

The last tested version was the Algorithm 2 with Vadam optimiser. The results are
shown in the last row of Figure 1. They appear to be comparable with the estimates
found by Algorithm 2 with full covariance (ELBO-Vadam assumes it is diagonal). The
estimated image is sharp, there are almost no visible constant areas, and the blur estimate
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Figure 1: The first row shows results of IVB algorithm with diagonal covariance, sec-
ond results of ELBO with diagonal covariance, third results of IVB algorithm and full
covariance, fourth results of ELBO algorithm with full covariance, and fifth results of
ELBO-Vadam algorithm. The upper image on the left side of a row shows the original
blur, the lower its estimate. The first image of Lena in the row is the original one, the
second one is the blurred one, the third is the direct estimate from the algorithm, and
the last one shows the result of non-blind deconvolution.
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is close to the real one.

Figure 2 shows PSNR (peak signal-to-noise ratio) of the reconstructed images. The
first graph shows PSNR of the direct estimate of sharp image µx. The best result were
achieved by Algorithm 2 with full covariance and Algorithm 2, for the weakest noise
they reach PSNR of 30 dB. Results of Algorithm 2 are even worse than PSNR of the
blurred image, although it looks sharper in Figure 1, which is probably caused by the
piecewise-constant character of the estimate. As can be seen from the second graph, the
non-blind deconvolution performs better PSNR-wise, yet the images seem less sharp than
direct estimates in Figure 1. All the algorithms reach similar values on the SRN levels of
20, 30 and 40 dB, but for SNR 50 dB Algorithm 2 with full covariance and Algorithm 2
outperform the rest.

Overall, Algorithm 2 is the best alternative to the analytical solution of Algorithm 2,
as it reaches the same accuracy, even though it assumes that the covariance of the blur
is diagonal. The reason why it outperforms Algorithm 2 may lie in the fact that Vadam
draws samples from the posterior and, therefore, it is able to find better local minima.
Algorithm 2 evaluates gradient in randomly drawn samples as well, but its estimate of
covariance may not be that good as it does not depend directly on the changes of k.

4 Conclusion

In this paper, the problem of blind image deconvolution was examined through the varia-
tional Bayes framework. ARD model was chosen for image gradients because the image is
assumed to be piecewise-constant. Three algorithms were compared. First of them is the
iterative variational Bayes algorithm, which utilizes the fact that prior distributions were
chosen to be from the conjugate system, thus only parameters of posteriors are unknown.
It iteratively recomputes the parameters and minimizes Kullback-Leibler divergence of
approximation of posterior from real posterior. The assumption of conjugate priors is
very restrictive, hence another approach to minimization of Kullback-Leibler divergence
was proposed. The second algorithm uses steps from the first one, but parameters of
the posterior of the blur are estimated via maximization of evidence lower bound by
stochastic gradient descent, where the reparametrization trick was used to approximate
a complicated expected value, which could be necessary if the priors were not chosen
so conveniently. Moreover, stochastic gradient descent with Vadam optimizer was intro-
duced as the third algorithm. All algorithms were tested on a blurred cut-out from Lena.
It was shown that optimization of ELBO with Vadam optimiser achieves as good results
as the iterative variational Bayes algorithm with full covariance matrix. This suggests
that the direct numerical optimisation could be used instead of VB when a more flexible
model is required, possibly without any loss of precision.
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Figure 2: The graphs show values of PSNR of sharp image estimate for four levels of
SNR. The upper one shows values for the direct estimate of the image, the lower one
for the non-blind deconvolution. The blue line is of IVB algorithm with full covariance
and the red one with diagonal covariance, green line is of ELBO algorithm with diagonal
covariance, purple of ELBO-Vadam algorithm and brown shows PSNR of the blurred
image.
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Abstract. The main objectives of this paper is to evaluate the hysteretic properties of mate-
rials using the Preisach-Mayergoyz (PM) model. A new kernel density estimation methods are
proposed to describe the distribution in PM space. These kernel descriptions are based either on
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1 Preisach-Mayergoyz hysteresis model

Hysteresis phenomenon refers to the evolution of a dynamical system that depends not
only on the input independent variable, but also on the previous evolution of the system
state. Thus, in a system with hysteretic behavior, we are unable to describe the relation-
ship between the input variable and the outcome without knowing the history of previous
states. In this paper, we use hysteresis to evaluate the elastic properties of a material,
specifically to determine the degree of damage of dissipative dampers that are installed
in building structures for earthquake protection.

To describe the hysteresis, we used the so-called Preisach-Mayergoyz (PM) model.
The basic building block of this model is the so-called hysteresis operator γ̂α,β, also
referred to as the hysteron. This operator can be represented by the rectangular curve in
Fig. 1(a), where the numbers α and β, β < α, denote the closing and opening values. For
our case with dampers, the fact that the hysteron is open means that when this pressure
is reached, the hysteron loses its ability to absorb additional load and no longer helps
damping. If the input signal u(t) increases monotonically, the curve ’abcde’ corresponds
to this in the graph in Fig. 1(a). Conversely, a monotonic decrease in the signal will
result in a curve ’edfba’. Mathematically, we write the output of the hysteresis operator

85
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γ̂α,β =


−1, u(t) ≤ β,

1, u(t) ≥ α,

k, u(t) ∈ ( β, α) ,

(1)

where

k =

{
1, pokud ∃ t∗ : u(t∗) > α, ∀τ ∈ (t∗, t) , u(τ) ∈ ( β, α) ,

−1, pokud ∃ t∗ : u(t∗) < β, ∀τ ∈ (t∗, t) , u(τ) ∈ ( β, α) .

The opening and closing values of the hysterons appear in the right triangle as points
(α, β), which uniquely correspond to the hysteresis operator γ̂α,β (Fig. 1(b)). The hy-
potenuse of this triangle is the limit line α = β of ideal elasticity. If we now consider an
infinite set of hysteresis operators γ̂α,β and the so-called Preisach function µ (α, β), which
is a non-degenerate probability density on α ≤ β and which therefore gives the density
of hysterons in PM space, we can write the PM model of hysteresis as a superposition of
such operators

v(t) = Γ̂ [u(t)] =

∫∫
β≤α

µ (α, β) γ̂α,β (u (t)) dα dβ. (2)

The symbol Γ̂ is used here to express properly the output of PM hysteresis model. This
definition of PM space is shown in Fig. 1(c).

2 Identification of PM space

One of the fundamental problems is to find efficiently the PM space that corresponds to
the appropriate hysteretic behaviour of the material. We first introduce suitable proba-
bility distributions that describe well the distribution of hysterons in the material. Next,
we introduce divergence measures that will be used to evaluate the difference between
the measured and optimization-derived hysteresis curves.

The first two distributions are proposed specifically for heterogeneous materials by
Guyer and McCall ([4]), followed by Koen distribution. For the purpose of our work,
the value of the input load u (t) will be represented by the pressure P interacting in
the material, which is described by the following distributions. Thus, the first Guyer
distribution (Guyer1)

Pc = max · r αc , Po = Pc · r βo , (3)

the second Guyer distribution (Guyer2)

Pc = max · r αc , Po = Pc · r 0.25+0.75µ
o , (4)

and Koen’s PM distribution (Koen)

Pc = max · rc, Po =

(
Pc
α

) β

· ro, (5)
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+1

-1a b c

d ef

u(t)

v(t)

(a) Hysteresis operator

 = 

(b) PM triangle

(c) Superposition of hysteresis operators

Figure 1:

where α, β, µ ∈ R+
0 are the parameters of the distribution, Pc and Po denote values of the

closing and opening pressure, max is the maximum value of input pressure, and rc, ro
are random numbers uniformly generated from interval (0, 1). Further, bivariate normal
distribution, truncated into a PM triangle, is also used due to its potential to describe
elliptic clusters of hysterons

f (x, µ,C) =
1

2π
√
|C|

exp

(
−1

2
(x− µ)T C−1 (x− µ)

)
, (6)

where the parameters are the vector of means µ = (µ1, µ2) and the positively definite,
symmetric correlation matrix C, where x = (x1, x2), x1, x2 ∈ [0,max] and x1 ≥ x2 ≥ 0.

To determine the divergence between the found and measured hysteresis curves, which
is the value that must be minimized, we use, in addition to the classical L2-metric, the
φ-divergences, particularly the Hellinger distance

H2 (P,Q) =
1

2

∫ (√
f −√g

)2
dµ, (7)

and also the LeCam distance

LC2 (P,Q) =

∫
(f − g)2

f + g
dµ, (8)



88 E. Doleǰs V. K̊us

which we also use to describe the difference between the probability density estimates of
PM spaces. The optimization algorithms themselves have been the main focus of previous
work and will not be discussed here.

3 Kernel estimates on PM space

In this paper, we discuss the techniques of kernel probability density estimation to the
distribution of hysterons in PM space. This knowledge is then used to design an elasticity
index or damage index.

Definition 1 (Kernel probability density estimation). Let X1, ..., Xn be a random sample
of size n from a continuous random variable X with probability density f (x). Let the
symmetric function K (x) ≥ 0, which will be called the kernel, satisfies the conditions∫

K (x) dx = 1,

∫
xK (x) dx = 0,

∫
x2K (x) dx > 0. (9)

Then for all x ∈ R we define the kernel density estimate by

f̂ (x ;h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh (x−Xi) , (10)

where Kh (x) = 1
h
K
(
x
h

)
is the scaled kernel and h ∈ R+ is the smoothing parameter.

The first method proposed for kernel estimation of the PM space consists of projecting
the hysterons from the PM space onto the vertical side of Preisach triangle via its lower left
vertex and then applying standard one-dimensional kernel estimators. For illustration,
the principle of this estimation is shown in Fig. 2. Each hysteron, together with its lower
left vertex, forms a line, and its intersection with the vertical right leg is a projected point
(Fig. 2). We then apply a kernel estimator to this data lying on the vertical right-hand
line (Fig. 2(b)), and this estimator proceeds in the top-to-bottom direction chosen to
ensure that perfectly elastic hysterons are represented at the beginning of the estimation
region and elastically damaged hysterons at the end (Fig. 2(c)).
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Figure 2: Kernel estimator based on PM space projections onto the vertical legs
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In addition, a symmetrically inverted estimator is used in this paper, where the in-
dividual hysterons are projected from the upper right corner of the triangle onto the
horizontal side. In the same way, we apply the kernel estimator to the newly distributed
points, with the estimation proceeding from left to right to capture the direction from the
elastic diagonal. Next, the information from the projections in both directions is com-
bined by projecting the points onto the horizontal perpendicular, and again performing
the classical one-dimensional kernel estimation on these newly distributed points, this
time in the top-to-bottom direction, which proceeds smoothly from right to left.

Another method is based on direct kernel estimation of the PM space using a kernel
with a special shape of its support. This support traverses the Preisach triangle in the
given way and the resulting kernel estimate is given by the following expression

f̂ (x ;h) =
1

const

n∑
i=1

1

s (x ;h)
Is(x ;h) (Xi) , (11)

where n denotes the size of data sample, s (x ;h) is the area of kernel support depending
on variable x and smoothing parameter h, const is the normalization constant to make
f̂ (x ;h) be the probability density, and Is(x ;h) is the characteristic function for the support
s (x ;h).

The first such 2D-kernel estimate of PM space is using a kernel with a triangle-shaped
support. This always has a lower left vertex identical to the Preisach triangle, and the
opposite to it lies on a line, again given by the vertical branch of the Preisach triangle.
This opposite side of the kernel support K has length h, where h is the smoothing
parameter (Fig. 3(a)). An inverted estimator was also used, where the carrier has a peak
in the upper right corner and the opposite side moves along the horizontal axis. As with
the kernel estimator with PM space projection, a combination of these two directions
connected in sequence to form a double-length estimator was also used.
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(b) Constant kernel estimate

Figure 3: Kernel estimator based on constant 2D-kernel with triangular support

Next, we introduce the kernel estimates that requires only one motion direction. This
involves using the kernel with a trapezoid-shaped support that moves away from the
elastic diagonal so that its bases are always parallel to it (Fig. 4(a)). We take as the
coordinate of this estimate the center of the trapezoid, which moves along the center of
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Figure 4: Kernel estimator based on constant 2D-kernel with trapezoidal support

gravity of PM triangle and is therefore
√

2/2 times longer than previous estimates, where
the coordinate moved along the legs of PM triangle.

The last proposed support is based on a quadrilateral kernel support whose two ver-
tices are fixed at the origin and the upper right corner, and the other two are shifted
along a media (axis of gravity) spaced apart by a smoothing parameter h. This wing-like
support can be seen in Fig. 5(a).
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Figure 5: Kernel estimator based on 2D-kernel with wing-like support

The previous kernel estimate consists, like the first proposed method, in projecting
the points and then using the standard kernel estimator. This time, however, the points
are projected onto the altitude that belongs to the hypotenuse of PM triangle. Thus,
this altitude divides the triangle into two halves. Therfore, the points in the bottom half
are projected via the lower left corner of PM triangle, and the points in the upper half
are projected to the altitude via the upper right corner of PM triangle (Fig. 6(a)). We
apply a standard Gaussian kernel to these newly distributed points (Fig. 6(b)), where the
kernel estimation runs along the altitude again from the hypotenuse to the bottom right
corner in order to capture the progression from perfectly elastic points to imperfectly
elastic ones.
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Figure 6: Kernel estimator while projecting PM space to altitude

4 Design and evaluation of elasticity index

The individual kernel estimates presented in the previous section are used to design the
elasticity index. To do this, we use the Le Cam distance of kernel estimate of the cor-
responding PM space under study and the kernel estimate of the perfectly elastic PM
space that has all the hysterons on hypotenuse of the Preisach triangle. This value is
re-normalized by the maximum value of the Le Cam divergence it takes for the perfectly
inelastic space. We thus define elasticity index IEj = LC/LCmax, where we use a pro-
jection onto both branches with the normal Gaussian kernel (j = 1), the kernel with
triangular support, the kernel traversing both branches (j = 2), the constant kernel with
trapezoidal support (j = 3), the constant kernel with wing-like support (j = 4), and
finally, projecting onto the altitude of the triangle using normal Gaussian kernel (j = 5).
These indexes were subjected to testing on generated data and also on cyclic stress tests
of a metallic damper subjected to successive cycles. An example of a measured cycle can
be seen in Fig. 7. The PM spaces from Fig. 8 correspond to these measured data.
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Figure 7: Hysteresis curve and input load for the third cycle on damper
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Figure 8: PM spaces identified on dissipative damper in all 6 cycles
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Figure 9: Final values of indexes IE1 to IE5 for earthquake damper test data
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On these PM spaces we performed the kernel estimation introduced above and using
the introduced methods we evaluated the individual indexes, which can be seen in Fig. 9.
We can see that good results are achieved by IE1, which grows almost monotonically for
the measured damper data. Also IE2 and IE5 behave similarly, but its nominal values
achieve rather narrow range. The IE3 index increases only on the first three segments
and then stagnates, which in practice reflects the potential significant damage of the
damper from the 3rd segment onwards and the urgency of earlier replacement. The IE4

behaves practically constant in all segments and is therefore unusable without any further
re-normalization.
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Mayergoyzova prostoru. Bakalářská práce, FJFI, ČVUT, 2020.
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Abstract. Simultaneous search for multiple sparse solutions of a classification/regression prob-
lem differs fundamentally from common approaches to these classical machine learning problems.
At the same time, it is strongly motivated by practical requirements, e.g. in applications in
biomedicine. In such tasks, we face high dimensions, limited number of samples, errors in data
and, most importantly, the necessity of providing a human-interpretable model. On the other
hand, field-related expertise is usually available. This contribution shall convey the concept of
multisolution feature selection within a classification problem. Using a real world example, we
shall introduce the core ideas. We shall also outline the individual steps leading to the problem’s
formal definition and its potential solution.

Key words: machine learning; classification.

1 Introduction

Machine learning tools can be highly useful in many fields where big data is involved.
With the arrival of ever more precise biochemical measurement techniques producing ever
larger datasets, algorithms providing interpretable models can help to explain complex
phenomena based solely on the information contained in the data.

This work is inspired by classification/regression problems in the context of biomedicine
[7, 10, 9, 11]. However, their specifics are not limited to bioinformatics and can be easily
found in other applications as well (e.g. malware detection [1]). We assume our data is
produced by measurement techniques like mass spectroscopy or gel electrophoresis. The
data is thus noisy and high-dimensional. There are a few dozen samples at best, possi-
bly even having unreliable classification/regression labels. At this setting, we admit the
inherent uncertainty and nonuniqueness of solutions. Instead, we aim to find the set of
all candidate solutions that pass a given quality threshold. Since our primary goal is to
find a humanly interpretable solution (i.e. a model – a classifier or a regressor), we focus
primarily on feature selection (as opposed to prediction). Choosing the final appropri-
ate model for a given application is then an object of further expert, non-mathematical
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examination.

2 The Problem

We shall use the l0-norm to describe sparsity of a solution.

Definition 1 (l0-norm) Let the l0-norm of a vector β ∈ Rp be defined as

||β||l0 =

p∑
i=1

γi, where γi =

{
0 if βi = 0,

1 otherwise.

Then the problem can be formulated as follows:

Problem 1 (The Multisolution Regression Problem) Let X ∈ Rn×p, p >> n, be
given data (samples) and y ∈ Rn their corresponding labels. For given ε ∈ R, ε > 0 and
δ ∈ N, find β ∈ Rp such that

||Xβ − y||l2 ≤ ε and ||β||l0 ≤ δ.

Parameter δ provides a constraint on a solution’s sparsity. Its value is easily provided
by the application’s context. Parameter ε describes the required optimality of a solution,
directly influencing the number of possible solutions. Let us observe that each δ yields
an independent problem, while tuning ε is an integral part of the problem.

3 Bayesian Approach to The Problem

Since we want to admit and work with uncertainty within our data, we choose Bayesian
approach to Problem [2].

First, we assume Gaussian-distributed noise e ∼ N (0, σ2I), where I is a unit matrix,
in our linear model: y = Xβ + e. Therefore, it is

π(y|β) = N (Xβ, σ2I).

Now let us endow β with an appropriate prior distribution π(β) = π(β|θ), where θ
is a vector of the prior’s parameters. Then we can compute the maximum a posteriori
probability of β:

βMAP = argmaxβ log π(y|β) + log π(β).

Finally, the Bayes theorem provides the formula for computing the posterior distri-
bution of unobserved, latent variables and parameters Z = {β, θ, σ2} given our observed
data X = {X, y}:

π(Z|X ) =
π(X|Z) π(Z)

π(X )
. (1)

Unfortunately, this posterior distribution is intractable in our case. Hence we shall
take the following strategy:
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1. select an appropriate prior π(Z) – effectively the prior distribution on β – aiming
for a set of sparse candidate solutions,

2. conveniently approximate the multimodal posterior π(Z|X ) and

3. provide computational means to actually find (approximate) solutions of the original
Problem 1.

4 The Building Blocks

4.1 Prior Distribution

The Bayesian approach does not only look for the optima, but it also models the shape
of the posterior distribution. Since we expect our problem to have multiple solutions, the
posterior distribution shall be multimodal. Therefore our choice of a prior must allow for
multiple modes. Equally important is the requirement of sparsity upon βs.

As a result, there are three main prior choices that can be used: the Spike & Slab [6],
the Student-t [2] and the Horseshoe prior [4].

4.2 Posterior Approximation

Next, we need to approximate the multimodal posterior π(Z|X ) and the model evidence
π(X ) with another distribution q(Z) such that it can be used in computations.

Measuring the goodness of fit of such an approximation by the Kullback-Leibler di-
vergence, we utilize the Evidence Lower Bound technique.

Definition 2 (Evidence Lower Bound) Let π and q be probability distributions. Let
the data X and the latent variables and parameters Z be as in equation (1). Then let us
decompose the log marginal probability as

log π(X ) = L
(
q(Z)

)
+ KL(q||π), (2)

where

L
(
q(Z)

)
=

∫
q(Z) log

(
π(X ,Z)

q(Z)

)
dZ (3)

is the Evidence Lower Bound (ELBO) and

KL
(
q(Z)||π(Z|X )

)
= −

∫
q(Z) log

(
π(Z|X )

q(Z)

)
dZ (4)

is the Kullback-Leibler divergence.

Because decomposition (2) holds, maximizing the lower bound (3) is equivalent to
minimizing the KL-divergence (4).

Now it remains to find a surrogate function q such that the posterior’s multimodality
is preserved, the modes are approximated accurately and the surrogate is significantly
easier to use.



98 K. Henclová

The usual choice of q as a product of independent distributions does not comply with
our needs. Instead, it is fitting to use a mixture of Gaussian distributions:

q(Z) =
m∑
k=1

αkqk(Zk), (5)

where αk > 0 ∀k ∈ {1, . . . ,m} are the normalization weights. Each component of the
mixture corresponds to one solution and/or one mode. Multimodal function q(Z) is then
defined as a superposition of these solutions.

To summarize: instead of the original problem, we shall solve the ELBO maximization
problem 3, where q is a mixture described by 5.

Problem 2 (The Parametrized Maximization Problem)
Solve

argmax∀µ(k)∈ Rp; ∀σ(k)
i > 0; ∀αk> 0

∫∫ (
m∑
k=1

αkqk(Zk)

)
log

(
π(Z) π(X|Z)∑m
k=1 αkqk(Zk)

)
dµ dσ,

(6)
where:

� π(Z) is the chosen sparse prior distribution, whose logarithm is not convex,

� the likelihood is

π(X|Z) =

m∑
k=1

1(√
2πσe

)n exp

{
− 1

2σ2
e

||y −Xβ(k)||2l2

}
,

where the k-th candidate solution β(k) is the mean value of the k-th normal distri-
bution and σ2

e is the variance of observation error,

� components of the surrogate distribution are

qk(Zk) =
1(√

2π
)p∏p

i=1 σ
(k)
i

exp

−1

2

p∑
i=1

(
βi − µ(k)

i

σ
(k)
i

)2

, ∀k = 1, . . . ,m,

� and it is
∑m

k=1 αk = 1.

4.3 Solving The Approximate Problem

In order to solve the maximization within Problem 2, we shall use a version of the
Stochastic Gradient Descent (SGD) algorithm [3]. Due to the choice of q as a mixture, the
maximization cannot be conveniently simplified (as it is in the case of the standard choice
of q being a product). In order to compute the gradients within SGD, the implicit version
of the reparametrization trick [5] must be used. Paper [8] derives the exact optimization
algorithm we need. Within the actual computations, automatic differentiation shall be
utilized.
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Definition 3 (SGD algorithm for Reparametrized Mixtures) Let us denote

h(Z) = log {π(Z) π(X|Z)} − log

{
m∑
k=1

αkqk(Zk)

}
and let η be the learning rate.
For a given number of iterations we repeat: for every k ∈ {1, . . . ,m} set:(

Σ(k)
)−1

=
(
Σ(k)

)−1
+ ηδk ∇2 [h(Z)] ,

µ(k) = µ(k) − ηδkΣ(k) ∇ [h(Z)] ,

δk =
qk(Zk)∑m

k=1 αkqk(Zk)
,

αm = 1−
m−1∑
k=1

αk,

log

(
αk
αm

)
= log

(
αk
αm

)
− η (δk − δm)h(Z).

5 Conclusion

We have formulated the multisolution classification/regression problem and outlined the
strategy to tackle it. In spite of its similarities to its traditional single solution counter-
part, it provides a very challenging setting.

The Bayesian approach is taken to admit all inherent uncertainty within the data as
well as to incorporate our requirements of sparsity and multiple solutions. The posterior
distribution is approximated by a Gaussian mixture while the goodness of fit is measured
by the Kullback-Leibler divergence. The resulting new optimization problem is to be
solved using a tailored version of the Stochastic Gradient Descent.

Future work on this problem shall focus on creating a robust and usable implementa-
tion of the described method.
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Department of Mathematics, FNSPE, Czech Technical University in Prague, Czech Re-
public

Email: jaruskri@fjfi.cvut.cz, kus@fjfi.cvut.cz

Abstract. Simulations of elementary particles play a key role in the attempts to discover
new laws of physics, which is why high precision is expected of them. The common approach
to generating simulations is the use of Monte Carlo-based algorithms (MC). However, MC
simulations are usually in the form of a weighted dataset that makes it impossible to use
standard homogeneity tests to verify an agreement between simulations and real measurements.
This work examines different approaches to homogeneity testing of weighted datasets and using
numerical simulations.

Key words: high energy physics, homogeneity testing, kernel density estimates, re-arranging,
weighted samples.

1 Introduction

New findings in High Energy Physics (HEP) often rely on the comparison of theoretical
assumptions and experimental measurements. In this comparison, the theory is repre-
sented by artificially simulated particle interactions and decays acquired from complex
simulation tools based on the Monte Carlo algorithms. One of the steps in the compar-
ison process is verifying that selected physics quantities, e.g. particle energies, angles
or momentum, follow the same probability distribution for both the simulated and the
measured data without any prior knowledge of the parametric family. In general, this
can be achieved using nonparametric tests of homogeneity with the null hypothesis of
both datasets following the same distribution.

However, generating events with the Monte Carlo simulator is very time and compu-
tationally demanding [1]. For that reason, small changes in the initial simulation set-up
often result in adjusting an already existing dataset by assigning weights to individual
samples in that dataset rather than running the simulation algorithm again. Then the
task changes to testing a weighted dataset against an unweighted one. Unfortunately,
the standard homogeneity tests were not built to handle weighted data while neglecting
the weights of the simulated data may lead to false conclusions.
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First part of this article introduces three possible modifications that enable to account
for the weights in the homogeneity testing using the two-sample Kolmogorov-Smirnov
test as an example. The three approaches include modification of the test statistic [2]
and transforming the weighted dataset to unweighted using a method of re-arranging
[3] or the kernel density estimation. To verify the applicability of these approaches,
numerical experiments were performed. The methodology and results are described in
the second part of this article. Discussion over the results and a comparison of the
presented modifications are included at the end.

2 Homogeneity tests

The aforementioned Kolmogorov-Smirnov test was used as an example to examine the
different approaches to homogeneity testing of the weighted datasets. The Kolmogorov-
Smirnov two-sample test is based on the Kolmogorov distance of distribution functions
F, G : R→ [0, 1] defined as

K(F,G) = sup
x∈R
|F (x)−G(x)|. (1)

Using the measured or simulated samples, the distribution functions in (1) are replaced
by the empirical cumulative distribution function (ECDF)

Fn(x) =
1

n

n∑
j=1

I(−∞,x](Xj), ∀x ∈ R (2)

where X1, X2, . . . , Xn are iid random variables and I(−∞,x] is an indicator function of the
set (−∞, x]. Let us assume that the simulated and measured datasets contain n and m
samples respectively. Then we denote the Kolmogorov distance between ECDFs Fn and
Gm as

Kn,m = sup
x∈R
|Fn(x)−Gm(x)|. (3)

Then under the assumptions of the two datasets being independent and the true distri-
bution being continuous, the Kolmogorov-Smirnov test statistic satisfies√

nm

n+m
Kn,m

D−−−−−→
n,m→+∞

Z (4)

if the data in both datasets were sampled from the same distribution. The random
variable Z follows the distribution

H(λ) =

{
1− 2

∑+∞
k=1(−1)k−1e−2k

2λ2 pro λ > 0,

0 pro y ≤ 0.
(5)

The null hypothesis H0 of the two datasets originating from the same distribution is
rejected if √

nm

n+m
Kn,m ≥ h1−α (6)
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where h1−α is the (1− α)-quantile of the distribution H. The p-value can be calculated
as

p− val = 1−H
(√

nm

n+m
Kn,m

)
. (7)

In general, there are two possible ways to testing the homogeneity of two weighted
datasets. The first approach is based on a modification of the test statistic to account
for the weights assigned to individual samples. The second approach takes the weighted
dataset and transforms it into a unweighted data which means creating new samples all
with unit weights that all together give similar ECDF.

2.1 Weighted test statistic

To modify the KS test statistic (3), we first replace the ECDF by a weighted empirical
cumulative distribution function (WEDF) defined in [4]

FW
n (x) =

1

W

n∑
j=1

Wj I(−∞,x](Xj), ∀x ∈ R (8)

where the W1,W2, . . . ,Wn represent the weights assigned to the observations of random
variables X1, X2, . . . , Xn. Example of how the weights may change the empirical distri-
bution is shown in image 1. Secondly, we replace the number of samples in a dataset that
appears under the square root in (3) with an effective sample size

ne =

(∑n
j=1Wj

)2∑n
j=1W

2
j

≈ n
(EW )2

EW 2
. (9)

Hence, we get a modified KS test statistic

neme

ne +me

sup
x∈R
|FW
n (x)−GV

m(x)|. (10)

However, it was not proved yet that this modified statistic follows the distribution (5)
like the standard KS statistic. The possibility to use the modified statistic with the (5)
distribution was examined in [5] in the case of one weighted and one unweighted dataset.

This approach can be used for other non-parametric homogeneity tests that are based
on the ECDF, e.g. the Anderson-Darling test or the Cramer-von Mises test. The results
were satisfactory showing that the true distribution of the modified KS statistic under
the null hypothesis is very close to the distribution (5).

2.2 Re-arranging

The approach of using the weighted dataset to generated a unweighted one was also tested.
The re-arranging method replaces the weighted samples by a special set of weighted
averages that form the new unweighted dataset [3]. Let us assume that we have an
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Figure 1: Illustration of the influence of weights to the empirical distribution. (blue)
ECDF of 50 observations from N(0,1). (red) WEDF of the same observations with weights
from U(0,1).

ordered set of observations x(1), x(2), . . . , x(n) with weights w1, w2, . . . , wn that satisfy 0 ≤
wi ≤ 1 ∀i. Then k1 is such a number that

1 ≤
k1∑
i=1

wi < 2. (11)

The first observation of the new unweighted dataset is calculated as

y(1) =

∑k1
i=1 x(i)wi − x(k1)rk1∑k1

i=1wi − rk1
(12)

where rk1 denotes a weight residue rk1 =
∑k1

i=1wi − 1. This residual part of the weight
wk1 is used in the calculation of the next unweighted observation that is acquired in an
analogous manner. An example of the WEDF of a weighted dataset and the ECDF of
the re-arranged dataset is depicted in graph 2. Detailed explanation of the re-arranging
method with more examples can be found in [4] or [6].

The distributions of the newly created re-arranged datasets can be compared using
standard homogeneity test because all samples have unit weights. The obvious drawback
is that we are no longer comparing the original data.

2.3 Kernel density estimation

In [6], we proposed using the weighted kernel density estimates to get an estimate of the
probability density function and use that to generate a new set of unweighted samples
from the estimated distribution. The weighted kernel density estimate (WKDE) in a
point t is defined as

f̂(t) =
1

h
∑n

j=1Wj

n∑
j=1

WjK

(
t−Xj

h

)
, ∀t ∈ R (13)
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Figure 2: Example of re-arranged dataset. (red) WEDF of 30 samples from N(0,1) with
weights from U(0,1). (blue) ECDF of the re-arranged dataset.

with h being the bandwidth parameter and a kernel K : R → R+
0 ,
∫
RK(t) dt = 1. For

our test, the Gaussian kernel function was used.
To generate new samples from the KDE, a procedure described in [7] was followed.

First, a sample XI is randomly selected taking into account the sample weights. Then a
number ε is drawn from a probability distribution defined by the chosen kernel K. Then,
the new unweighted observation is given by XI + hε. For the new observations, it is
possible to use the standard KS test.

The use of adaptive weighted kernel density estimates (AKDE) was also examined.
In this case, the bandwidth parameter h changes depending on the population density of
the observed samples around the point t.

3 Numerical simulations

All approaches briefly described in the previous section were put to test by performing
numerical simulations for observations and weights generated from different probability
distributions. The observations were generated from the normal, logistic, lognormal,
gamma, or Weibull distributions. It was anticipated that the weights lie in the interval
[0, 1]. To test various distribution shapes of the weights, we used Beta distribution with
different parameters to skew the distribution towards 0 or 1, U shaped variant of the beta
distribution was also tested as well as a uniform distribution of the weights. Hence, it is
assumed that the weights are independent of the observations.

3.1 Methodology

Firstly, two sets of equal size s were generated from the same distribution. Next, two sets
of weights were generated and randomly assigned to the observations. Then we performed
the chosen modification of the KS test at a significance level α = 0.05 and recorded the
p-value and whether the null hypothesis was rejected or not.

The steps described above were repeated k = 10000 times. With the certainty that
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both datasets do follow the same distribution, the proportion of the H0 rejections on
the number of repetitions k should be equal to the significance level α because of the
definition of a critical region. This proportion was of our primary interest because it
represents an estimate of the type I. error.

Two datasets generated from slightly different distribution were also tested against
each other to evaluate the power of the test. To estimate the power, i.e. the ability to
reject H0 when it is not true, we used the proportion of H0 rejections on the number of
repetitions again but this time while knowing that H0 is not true.

3.2 Results

The examined variants of the KS test were the test with modified statistic, the use
of re-arranging technique, and the procedure that includes kernel estimates for both the
classical and adaptive KDE. For demonstration purposes, we discuss results of simulations
for samples generated from the normal distribution N(0,1) with weights following the
Beta(2,4) distribution that is skewed towards 0. The results for different combinations of
the sample and weight distributions were similar.

The first plot 3(a) shows the estimate of the type I error for homogeneity testing of two
weighted samples generated from the same distribution. We observe that the test with
modified statistic (denoted as ’Weighted’) had the estimate of the type I error around
the significance level α = 0.05 for all examined sample sizes s depicted on the x-axis. In
case of the tests with kernel estimates, the type I error estimates attained values around
0.1 and grew as we increased the dataset size s. On the other hand, the simulations for
the test with re-arranging returned type I error estimates very close to 0 which itself is
acceptable.

However, a very low type I error estimate may indicate a low power of a test. For that
reason the image 3(b) depicts the stimates of a power of a test. In this case, the weights
of both datasets were generated from the Beta(2,4) distribution and the observations in
the first dataset followed N(0,1). Most of the samples in the second dataset were also
generated from N(0,1) but a small portion of the data was generated from a so-called
error distribution, in this case from N(0.5,1). The amount of error samples is represented
on the x-axis. Both datasets contained s = 1000 samples.

Indeed the test with re-arranging has the lowest power. For a small portion of the
error samples, the test procedures with kernel estimates show the highest power of test
but as we increase the number of error samples, the power of the test with modified
statistic increases more quickly than that of the KDE tests. Therefore, the test with
modified statistic is the best option for homogeneity testing of two weighted datasets
even though the limit distribution of the test statistic was not proved yet. It attains the
desired type I error and has a good power of the test.

We tried to examine the reason behind the high value of type I error for the test with
kernel estimates. Both a potential problem with PDF estimation in tails or with the
choice of the bandwidth parameter h were disproved based on the plots shown in images
4. We also tested a different method to generate samples from the estimate to reject that
it was caused by this part of the procedure.

It is most likely that too many inaccuracies are accumulated during the construction
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Figure 3: Estimates of the type I error and the power of test for samples from N(0,1) and
weights from Beta(2,4). Error samples generated from N(0.5, 1).
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Figure 4: (left) Relative H0 rejection rate for locations of the supremum in KS distance.
(rights) Proportions of H0 rejection for different bandwidths h.

of the kernel estimate and the random sampling procedure that the KS test is sensitive
enough to capture it. As the dataset size increases, the KDE is wavier and more adapted
to the given dataset because the bandwidth h gets smaller.

To correct this effect, we propose a solution based on the p-value. Since the results
and type I error estimates were very similar for all examined distributions, we may choose
a distribution similar to the data that we want to test and run the simulation procedure
described earlier and record the p-values. Then the critical value for H0 rejection can
be determined as the α-quantile of the empirical cumulative distribution function of the
recorded p-values. The homogeneity test with this critical value is approximately tuned
to the significance level α and provides an alternative to the homogeneity tests with
modified statistic.

An example of using this correction is shown in plot 5. The samples and weights
followed the N(0,1) and Beta(4,2) distribution respectively. The critical value was set to
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pkrit = 0.0092.
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Figure 5: Estimate of type I error for the test with kernel density estimate after the critical
value correction.

4 Summary

The homogeneity testing of weighted datasets is still an open problem that arises in many
areas including HEP. We described three possible approaches to solving this task - modifi-
cation of the test statistic and creation of unweighted dataset using re-arranging or kernel
density estimates. We also performed numerical simulations to verify the applicability
of the proposed procedures on the example of the Kolmogorov-Smirnov test for various
sample and weight distributions.

The test with modified statistic attained the best results. The level of significance α
was approximately kept together with a good power of the test. Even though the tests
with kernel density estimates yielded a high estimate of the type I error, we proposed a
correction method that can be applied to tune the test to the desired level of significance.
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Abstract. The goal of this paper is to show the possibilities of state-of-the-art deep learning
methods for ultrasound signals evaluation. Several neural network architectures are applied to
acoustic emission signals measured during the tensile tests of metallic specimen to determine
the beginning of plasticity in the material. Plastic deformation is accompanied by microscopic
events such as a slip of atomic plane dislocations which is hardly detectable by other methods.
The potential of machine learning is demonstrated on two tensile tests where the material is
strained until it collapses. The examined networks proved well to reliably predict the risk of
collapse together with changes in the ultrasound emission signals.
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1 Introduction

The concept of neural networks began already in the 20th century. However, that time it
was not popular since these networks have a high computational and memory demands.
The learning of deep convolutional networks also require a lot of data which became easier
recently, mostly because of the spread of internet and an extensive hardware development.

From the time of AlexNet in 2012 all the state-of-the-art architectures for image
classification were based on Convolutional Neural Networks (ConvNets). In the next years
a lot of research was made in this field. Soon ConvNets spread to many other recognition
tasks. One of them is the Time Series Classification task (TSC) which involves various
problems including the signal recognition, stock market analysis and other tasks including
variables changing in time.

Contemporary rapid development of deep learning models enables also their applica-
tion in various fields where traditional perceptron architectures generally fail, e.g. the
evaluation of continuous ultrasound signals emitted by a plastic deformation of metals.
Plasticity is the ability of materials to be permanently deformed using an external force.

111
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This phenomena should be known very well for each type of material and considered
properly to avoid fatal failures of designed structures.

A goal of this paper is to create a deep learning model capable of detecting the
beginning of plasticity in metallic materials. For this purpose several experiments on
this matter were made in the Institute of Thermomechanics of the Czech Academy of
Sciences. In this paper we use results of two tensile tests of metallic specimen, while
continuous acoustic emission (ultrasonic elastic waves) was recorded by USB oscilloscope
using two sensors attached on the surface of material. These ultrasound signals were then
used in order to train neural networks for the plastic deformation detection.

2 Experiments - tensile tests

Acoustic emission (AE) is a phenomenon of radiation of transient elastic waves occurring
in solids due to dynamic changes inside the material [1]. This can be caused by many
different processes such as mechanical twinning, dislocation slip, initiation and growth of
cracks, phase transformation in metals, and corrosion.

A big advantage of the AE is that it offers a non-destructive way how to examine of
all the material volume. For this reason this method can be used to analyze processes
happening within the component, e.g. local microscopic changes in the material leading
to a permanent deformation, i.e. plasticity [1].

Figure 1: Metalic specimen with two attached sensors.

We will examine some neural network architectures created in recent years on real
signals. Here tensile testing machine stretches a metallic component with a computer-
controlled force or displacement, see figure 1. Two sensors (transducers) were measuring
the AE arising from the material by converting the elastic waves into electrical signals.
The sensing process also involves using a preamplifier in order to minimize inferences
which would create a lot of noise in the signal [1].
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In both experiments the signal was measured with a sampling frequency of around
1.6MHz saved in float32 data type. The first experiment (controlled by force) was almost
11.5 minutes long. Figure 2 shows the force and displacement in relation with time.
Here the plasticity begins around 300s and further increases from about 520 second. The
middle part (430s - 530s) is stable since the experiment was paused.

Figure 2: Loading force and displacement during the first experiment.

However, in this experiment one sensor failed due to an accidental weak acoustic
coupling to the material surface. The training intervals were set to [10, 37]s for the
elasticity part and [618.7, 643.7]s for the plasticity part. The validation intervals were
[37, 40]s for the elasticity part and [643.7, 646.5]s for the plasticity part.

The second experiment is similar to the first one. The main difference is that this
experiment was controlled by displacement and the noise from the tensile testing machine
was damped by special polyamide plates in order to measure more relevant data, i.e. the
signal arising exactly from the examined component. The time of the experiment also
increased from 686.5s of the first experiment to 1404.0s of the second one, see Figure
3. The training intervals were set to [60, 141]s for the elasticity part and [900, 981]s for
the plasticity part. The validation intervals were [141, 150]s for the elasticity part and
[981, 990]s for the plasticity part.

Figure 3: Loading force and displacement during the second experiment.

For simplicity, in the following results these graphs will be shown scaled to a range of
[0, 1] without any description.
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3 Program backend

All the examined neural networks are created in the keras library with the tensorflow

back-end since it is well implemented and optimized for training on GPU. Training on
GPU instead of CPU is crucial in order to speed up all the process. For this reason the
NVIDIA GEFORCE RTX 2070 with 8GB memory was used in both the training and
evaluation process. After a successful training all the signal is evaluated in order to predict
the beginning of plasticity. Since there is no reasonable way how to exactly determine
what is happening between the training intervals, these results are then discussed with
experts who can determine if this prediction is valid or not.

Since the signal is continuous, the input can be taken from any position in the training
intervals. This allows creating an extensive set of input tensors (or arrays) which are all
different. This approach can help reducing the overfitting.

Following experiments show that signal evaluation is in general very unstable so the
results are always smoothed using a Gauss window with manually chosen deviation.

3.1 HFD Spectrogram

In order to use the 2D convolutional neural networks the signal has to be transformed
into a matrix (tensor with one channel) using a carefully chosen time-frequency transfor-
mation. In this work we use a modified version of spectrogram called the High Frequency
Density (HFD) spectrogram defined as

P (m, frel ·Nq) =
∣∣∣N−1∑
n=0

x(n∆s)e
−πinfrelω(n− km)

∣∣∣2, (1)

where frel is a frequency relative to the Nyquist frequency, ω(t) represents a transfor-
mation window function, ∆s denotes the sampling period, x(t) stands for the signal, N
for the transformed interval length, and k for a stride of the window application. Unlike
the short-time Fourier transform, the HFD spectrogram does not have a problem with a
dilemma between the frequency and time resolution and the time window length can be
set arbitrarily.

4 Numerical experiments

For all the architectures several individual networks are always trained using different
starting weights. This approach is important in order to determine the stability of the net-
work with respect to the random initialization. Very different predictions could indicate
wrongly chosen hyper-parameters of the network or inappropriate training parameters.

The first considered architecture is the multilayer Perceptron. The reason why we
examine this architecture is that it is being mentioned in many scientific papers in the
Time Series Classification (TSC). This model generally has a big memory demand and
it is critically sensitive to the signal shift than the convolutional networks.

Since all the neurons from one layer are connected to all the neurons from the following
layer, if the input size would be e.g. 214 = 16384 and the first layer would use 1024 neurons,
there would be already around 16M parameters in that layer.
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The 8 independently trained networks on 5582480 data with a shape of 1x16384 have
a training accuracy of about 88% and validation accuracy varying between 48% and 83%.
This extreme instability makes the prediction of Perceptron untrustworthy. In addition,
this model has more than 200MB which makes Perceptron the worst efficient model we
have examined.

The next considered architecture is a 2D convolutional neural network similar to
AlexNet. It consists of 5 convolutional layers stacked to pooling layers, followed by
flattening, a dropout with a value of 0.3 and two dense layers. There are many ways
how to optimize this model better on the experimental data. However, these results are
shown as a demonstration that these models are unstable and require a lot of manual
hyper-parameter optimization.

As shown in Figure 4, the evaluation is more trustful than the Perceptron model.
However, the training is still unstable. The same architectures trained on the same data
with different initial weights are making various predictions. In addition, some of them
completely failed to train properly since they predict the same class for most of the signal.
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Figure 4: Simple ConvNets applied to all the signal from the first experiment.

Another architecture used to predict plasticity is based on the EfficientNet model
[3]. Unlike the simple convolutional network, the EfficientNet uses residual learning
together with multi-threaded modules. However, this whole family of models were created
primarily to the ImageNet recognition task including 1000 classes. Since the ImageNet
images are very different from the result of HFD spectrogram, we decided to train the
model from randomly initialized weights and we chose the EfficientNet-B1 in order to
make this model simple.

The result is shown in Figure 5. As the Alexnet model, some networks did not learn
to detect plasticity at all, some of them with problems. There are many optimization
options in training the EfficientNet model. However, these results already indicate that
the training process is unstable or that the HFD spectrogram does not necessarily provide
a proper feature extraction from the signal.

The last architecture we decided to test is based on the InceptionTime (see Figure
6) [2]. This architecture introduced by Fawaz et al. in 2020 has many advantages in
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Figure 5: EfficientNet models applied to all the signal from the first experiment.

its usage. As the Perceptron model the InceptionTime does not need any additional
transformation since it is being applied to a matrix (in this case vector) data.
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Figure 6: InceptionTime architecture.

However, unlike the Perceptron, the 1D convolution is used in order to extract the time
features. This also makes the model less sensitive to a signal shift. Another advantage is
that in the convolutional layers neurons are not connected densely. Instead, each neuron
contains a convolution core with only a few parameters (in this case between 1 and 40).
These cores are being applied along all the input signal in order to produce the output
matrix.

The chosen InceptionTime architecture was build from 3 InceptionTime modules and
a bottleneck with a size of 32. Since there are much less parameters, the network has
less problems with overfitting while having a less memory demand. The tested models
have only 2MB compared to more than 200MB of Perceptron while having much better
prediction ability. The results are depicted in Figure 7. In all the 8 tested models the
results look almost the same, only with a different scaling between the training intervals.
Furthermore, in all of them the peak around the time of 320s is visible and all of them
perfectly predict the training (and validation) intervals.
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Figure 7: InceptionTime models applied to all the signal from the first experiment.

4.1 Cross-channel generalization

In the previous experiments all networks were validated on data from the same sensor
which was used for their training. However, in order to create a model that could be
used for detecting plasticity in unknown components, these networks have to be able
to generalize their predictions also to sensors located on different places, preferably on
different components.

In the second experiment there are data from two sensors available. In order to de-
termine the level of generalization of each model, all the networks are trained on one
channel and then evaluated on the second one. Perceptron and Alexnet networks were
not good already on the same signal. EfficientNet appeared to work well on general-
ization between channels, however, only on the experiment which contained less noise.
Compared to InceptionTime, the EfficientNet results were also less stable and require
a computation demanding time-frequency transformation. For this reason we will only
show the InceptionTime results.

Figure 8 shows that InceptionTime is still stable in prediction even though the elastic-
ity part is scaled differently depending on the used network. It is also worth mentioning
that none of InceptionTime networks that we trained would completely fail to learn to
detect plasticity.

5 Conclusion

In this work four chosen architectures are tested throughout two experiments. From the
examination we deduce following results.

The Perceptron model described in many papers appears to be inappropriate for the
Time Series Classification task since it has a high memory demand together with very
weak prediction abilities. A simple AlexNet-like model together with the EfficientNet-
B1 models are performing better with less memory demand, however, they both overly
rely on the used time-frequency transformation which requires a lot of manual work on
choosing the hyper-parameters. In this paper we use solely a described HFD spectrogram.
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Figure 8: InceptionTime models applied to all the channel 1 signal from the second
experiment.

Compared to the AlexNet-like model, the EfficientNet is better in generalization since
it performs well even on signal which it was not trained on. However, as shown in the
first experiment, it is still sensitive to noises presented in the signal.

Finally, the last model called the InceptionTime performs well on signals from both
experiments regardless of the presented noise. Furthermore, this architecture predicts
reliable values for a signal measured on other part of the material and even for a signal
from another experiment. This makes InceptionTime the best examined model capable
of detection the beginning of plastic deformation. This network also does not require any
time-frequency transformation since it is being applied to the raw signal. However, it is
worth mentioning that the measured signal contains noise coming from the tensile test
machine and hence more research will be needed in order to confirm our results and to
prove that the neural networks fit the coming information more likely from the material
processes than the machine hydraulic system.
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Abstract. The Generalized Inverse Gaussian distribution (GIG) is frequently used in the vehic-
ular traffic modelling. Its properties for non-negative value of parameter α have been presented
in previous research [7]. The objective of this paper is to follow up discovered relations and
further explore properties of GIG with the negative value of parameter α, such as normalization
constant and the approximation of scaling constant. Because of the symmetric properties of
Macdonald’s function, many procedures from previous research can be adjusted and re-applied
for GIG with negative value of α. The main output of this article is analytical derivation of the
scaling condition and asymptotical expression for the scaling constant.

Key words: GIG distribution; Scaling; Macdonald’s function; Balanced density.

1 Introduction

The Generalized Inverse Gaussian distribution (GIG) became popular in the last decades,
mainly in the field of vehicular headway modelling [1, 2, 3, 4, 6]. Since the calculations as-
sociated with the GIG distribution are mostly solved through numerical approach, many
theoretical aspects remain unanswered. In this paper we will focus on one of this unre-
solved problem, namely the problem of scaling of the GIG distribution. Because of the
application in the field of particle system modelling, we will focus on GIG parametriza-
tion, which is in consonance with the definition of balanced density.

Definition 1 (Balanced density) Let f : R → R. Then function f(x) is called the
balanced density (and denoted f(x) ∈ B), if following axioms are fulfilled

(1) Ran(f) ⊂ R+
0 and Dom(f) = R,

(2) f(x) ∈PC (R), i.e. f(x) is piecewise continuous;

(3) f(x) ∈ L (R), i.e. f(x) is integrable;

(4) supp(f) ⊂ (0,+∞), i.e. f(x) has a positive support supp(f) = {x ∈ R : f(x) > 0};

119
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(5) Balance axiom: ∃ κ ∈ R+ such that

α > κ ⇒ lim
x→+∞

f(x)eαx = +∞,

α < κ ⇒ lim
x→+∞

f(x)eαx = 0.

According to the previous definition Generalized Inverse Gaussian distribution (see [5])

f(x) = AΘ(x)xαe−
β
x e−λx, (1)

where Θ(x) represents Heaviside unit-step function

Θ(x) =

{
1 for x > 0,

0 for x ≤ 0,

is the balanced density provided that A > 0, α ∈ R, β > 0, λ > 0. By solving the

normalization equation given by
∫
R f(x)dx

!
= 1 for GIG distribution (1) we obtain a

normalization constant in the form

A =

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

,

where Kα(x) represents Macdonald’s function. Macdonald’s function is also known as
modified Bessel’s function of the second kind, because it solves modified Bessel’s differ-
ential equations known from [8] as

x2K ′′
α (x) + xK ′

α(x)− (x2 + α2)Kα(x) = 0.

Alternatively, Macdonald’s function has a following integral representation

Kα(x) =
2α−1

xα

∫ +∞

0

yα−1e−ye−
x2

4y dy. (2)

2 Scaling equation

Finding normalization constant has been easily done in the previous section. However,
finding scaling constant λ is more complex problem and requires more prudent approach.
Scaling GIG distribution means to solve the following equations

µ0 =

∫
R
f(x)dx

!
= 1 and µ1 =

∫
R
xf(x)dx

!
= 1. (3)

First condition represents normalization equation, which is automatically fulfilled for GIG
distribution in the form of

f(x) = Θ(x)

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

xαe−
β
x e−λx. (4)
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The second condition (scaling equation) leads to the following expression

∫ +∞

0

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

xα+1e−
β
x e−λxdx =

√
β

λ

Kα+2(2
√
βλ)

Kα+1(2
√
βλ)

= 1. (5)

Apparently, it is impossible to explicitly express the scaling constant λ from (5). Nat-
urally, the question arises whether the solution of (5) exists for all possible parame-
ter combinations? Let’s make a small diversion and analyse the second moment µ2 =∫
R x

2f(x)dx. Assume normalized and scaled GIG distribution, which means that condi-
tions (3) are fulfilled. From (5) we know that√

β

λ
Kα+2(2

√
βλ) = Kα+1(2

√
βλ). (6)

The second moment is equal to

µ2
(2)
=
β

λ

Kα+3(2
√
βλ)

Kα+1(2
√
βλ)

?
=
β

λ

Kα+1(2
√
βλ) + 2(α+2)

2
√
βλ

Kα+2(2
√
βλ)

Kα+1(2
√
βλ)

(6)
=
α + β + 2

λ
, (7)

where operation ? represents application of the following recurrence property

Kα−1(x)−Kα+1(x) = −2α

x
Kα(x). (8)

Since the second moment is defined by µ2 =
∫
R x

2f(x)dx, then

µ2 =

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

∫ +∞

0

xα+2e−
β
x e−λxdx ≥ 0,

which implies that

µ2
(7)
=
α + β + 2

λ
≥ 0.

Unfortunately, α ∈ R, which warn us that for some α, β ∈ R it holds α+β+2
λ

< 0. This
ascertainment encourages us to take further action in order to explain this anomaly.

3 Existence of the scaling equation’s solution

Surprisingly, even the fact, that GIG is a density (and in its normalized form even prob-
ability density), does not guarantee a scalability. Described by words, scaling equation
demands the expected value of a random variable X given by distribution g to be equal to
1. But what if for some parameter combinations the expected value of GIG distribution
(4) cannot reach the value of 1? In the following text we will demonstrate, that such
combinations of α and β do exist. That forces us to form a precise scaling condition for
GIG distribution. In order to introduce the problem more closely, let’s take a look at the
function

fα(β, λ) =

√
β

λ

Kα+2(2
√
βλ)

Kα+1(2
√
βλ)
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occurring in the scaling equation (5). In the following Figure 1 it is illustratively shown
that for combination of α = −5 and small β, there is no value of function f−5(β, λ)
exceeding the value of 1. In the following Figure 2 it is demonstrated how a density, which
cannot be scaled, behaves. In this example it is shown, that even for extremely small
values ε > 0 the distribution’s expected value cannot reach the unit value. Moreover, for
this particular parameter combination, the function cannot even exceed the value of 1

2
.

Figure 1: Demonstration that for some combinations of α, β it is impossible to find such
λ, that the equality fα(β, λ) = 1 is fulfilled.

Theoretical explanation can be done via theory of implicit functions. For fixed α we
define function Φ : R2 → R by

Φ(β, λ) =

√
β

λ

Kα+2(2
√
βλ)

Kα+1(2
√
βλ)
− 1 = fα(β, λ)− 1. (9)

We aim to find set M of all possible β, for which

Φ(β, λ) = 0. (10)

Under these circumstances Φ(β, λ) generates an unique implicit function λ(β), i.e. the
solution of the scaling equation exists. Let’s consider this function as a function Φ(λ)
with parameter β > 0 and for simplification let’s substitute z = 2

√
βλ. We will analyse

this function in the following form

Φ(z) =
2β

z

Kα+2(z)

Kα+1(z)
− 1. (11)
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Figure 2: Normalized Generalized Inverse Gaussian distribution (4) with α = −5, β = 1
and different λ ∈ {10, 2, 1, ε}, where ε has a meaning of very small values.

Please note that Dom(Φ) = (0,+∞) and Ran(Φ) ⊂ (−1,+∞). As Figure 1 indicates, we
try to explore if maximum/supremum of function (11) reaches or exceeds zero, because
after relabelling the scaling equation transforms into the form Φ(z) = 0. Let’s concentrate
our focus on the border point of Dom(Φ), i.e. z = 0, and analyse the value of lim

z→0+
Φ(z).

For the following calculation we consider – in addition to (8) – the second useful property
of Macdonald’s function

Kα(x) = K−α(x) (12)

and also the approximation of Macdonald’s function for small x (known from [7]) as

xαKα(x) ≈ 2α−1Γ(α)(2α− 1)
1
2
−α (2x+ 2α− 1)α−

1
2 e−x =

1

2
2αΓ(α)

[
1 +

2x

2α− 1

]α− 1
2

e−x.

(13)
In order to inspect the following limit

lim
z→0+

2β

z

Kα+2(z)

Kα+1(z)
− 1,

we will divide the calculation into five separate sections according to the value of param-
eter α

1) α > −1:

lim
z→0+

2β

z

Kα+2(z)

Kα+1(z)
− 1 = lim

z→0+

2β

z2
zα+2Kα+2(z)

zα+1Kα+1(z)
− 1

(13)
= lim

z→0+

4β

z2
Γ(α + 2)

[
1 + 2z

2α+3

]α+ 3
2

Γ(α + 1)
[
1 + 2z

2α+1

]α+ 1
2

− 1

�
= 4β(α + 1) lim

z→0+

1

z2

[
1 + 2z

2α+3

]α+ 3
2[

1 + 2z
2α+1

]α+ 1
2

− 1
?
= +∞,
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2) α = −1:

lim
z→0+

2β

z

K1(z)

K0(z)
− 1

(8)
= lim

z→0+

2βK1(z)

zK2(z)− 2K1(z)
− 1

(13)
= lim

z→0+

2β [1 + 2z]
1
2

2Γ(2)
[
1 + 2z

3

] 3
2 − 2 [1 + 2z]

1
2

− 1

= β lim
z→0+

[1 + 2z]
1
2

([
1 + 2z

3

] 3
2 + [1 + 2z]

1
2

)
[
1 + 2z

3

]3 − [1 + 2z]
− 1 = +∞,

3) α ∈ (−1,−2):

lim
z→0+

2β

z

Kα+2(z)

Kα+1(z)
− 1

(13)
= lim

z→0+

β 22(α+2)

z2(α+2)

Γ(α + 2)
[
1 + 2z

2α+3

]α+ 3
2

Γ(−α− 1)
[
1− 2z

2α+3

]−α− 3
2

− 1

= β lim
z→0+

22(α+2)Γ(α + 2)

Γ(−α− 1)︸ ︷︷ ︸
>0

(
1− 4z2

(2α+3)2

)α+ 3
2

z2(α+2)
− 1 = +∞,

4) α = −2:

lim
z→0+

2β

z

K0(z)

K−1(z)︸ ︷︷ ︸
(12)
= K1(z)

− 1
(13)
= lim

z→0+

2βK0(z)

(1 + 2z)
1
2

− 1 =
lim
z→0+

2βK0(z)

1
− 1 = +∞,

5) α < −2:

lim
z→0+

2β

z

Kα+2(z)

Kα+1(z)
− 1

(12)
= 2β lim

z→0+

z−α−2K−α−2(z)

z−α−1K−α−1(z)
− 1

(13)
= β lim

z→0+

Γ(−α− 2)
[
1 + 2z

−2α−5

]−α− 5
2

Γ(−α− 1)
[
1 + 2z

−2α−3

]−α− 3
2

− 1

�
= −β lim

z→0+

[
1 + 2z

−2α−5

]−α− 5
2

(α + 2)
[
1 + 2z

−2α−3

]−α− 3
2

− 1
?
= − β

α + 2
− 1,

where symbol � represents the well-known relation Γ(z + 1) = zΓ(z) and symbol ?
indicates the limits

lim
x→0+

1

xκ

[
1 + 2x

2α+3

]α+ 3
2[

1 + 2x
2α+1

]α+ 1
2

=

{
1 pro κ = 0,

+∞ pro κ ∈ N,

lim
x→0+

xκ
[
1− 2x

2α+3

]α+ 3
2[

1− 2x
2α+1

]α+ 5
2

=

{
1 pro κ = 0,

0 pro κ ∈ N.

Since for α ≥ −2 function Φ(z) goes to infinity, then Φ(z) has supremum in the right
neighbourhood of zero. The result for α < −2 implies, that this function in the right
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neighbourhood of zero reaches finite value. Let’s examine if any other value of Φ(z) for
α < −2 can reach or exceed the limit value for z → 0+

Φ(0+) = − β

α + 2
− 1 T

2β

z

Kα+2(z)

Kα+1(z)
− 1 = Φ(z),

− β

α + 2
> − β

α + 2
+

βKα+3(z)

(α + 2)Kα+1(z)︸ ︷︷ ︸
<0

,

which means Φ(0+) > Φ(z). Therefore, we have just proved that

sup(Φ)α≥−2 = +∞ and sup(Φ)α<−2 = − β

α + 2
− 1.

From relabelling z = 2
√
βλ it is clear that sup(Φ(z)) = sup(Φ(β, λ)). Now we will return

to variables β and λ. We intend to find β fulfilling condition (10) and form the afore-
mentioned set M . If the supremum is lower or equal to zero, then the condition (10)
cannot be satisfied. In order to meet the condition we require sup(Φ) > 0. For α ≥ −2
the situation is simple:

sup(Φ)α≥−2 = +∞ > 0 ∀β > 0.

For α < −2 we obtain the following demand

sup(Φ)α<−2 = − β

α + 2
− 1 > 0 ⇔ α + β + 2 > 0. (14)

In order to fulfill the condition (10), β must satisfied (14) in case of α < −2. It leads to
the assertion that

M =
{
β ∈ R+ : α + β + 2 > 0

}
.

To conclude, in this section it has been found the suitable set M of all β such that
Φ(β, λ) meets the condition (10). Therefore, from the definition of implicit functions,
Φ(β, λ) generates unique implicit function λ(β), which guarantees the existence of the
scaling equation’s solution. Therefore, GIG distribution can be scaled if and only if the
scaling condition

α + β + 2 > 0 (15)

is met.

4 Approximation of the scaling constant

In the previous section we have checked the existence of scaling equation’s solution.
Since we cannot express λ from scaling equation (5) directly, we apply an approximative
approach. The asymptotic approximation of the scaling constant for GIG distribution
with non-negative value of parameter α was already proposed in research [7]. Because of
the symmetric property of Macdonald’s function (12), the procedure for non-negative α
can be adjusted even for α < 0. In this section, we will briefly introduce the process of
finding asymptotic approximation for negative value of parameter α. For that purpose,
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let’s relabel α ↔ −α, in order to highlight the negativity. Our goal is still to solve the
scaling equation, but this time we choose a different procedure. Conditions (3) can also
be understood as µ0 = µ1 = 1. Thus, if this problem requires the scaling equation to be
satisfied, then we can write

A

∫ +∞

0

x−αe−λxe−
β
x dx = A

∫ +∞

0

x−α+1e−λxe−
β
x dx = 1, (16)

where A is the explicit normalization constant A =

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

. For the following calcu-

lations, we denote β =
(
y
2

) 2
1−α , λ = κ

2
1−α , Ã = A(β(y), λ(κ)) and

I(y,κ) =

∫ +∞

0

x−αe−
( y2 )

2
1−α
x e−κ

2
1−α xdx

(2)
=

y

κ
K−α+1

((
2−αy κ

) 1
1−α
)
. (17)

If we multiply the integral I(y,κ) by the constant Ã, obviously Ã · I(y,κ) = 1. Let’s
derive the integral I by the parameter κ

∂I(y,κ)

∂κ
= −2 κ

1+α
1−α

1− α

∫ +∞

0

x−α+1e−
( y2 )

2
1−α
x e−κ

2
α−1 xdx,︸ ︷︷ ︸

(16)
= Ã−1

when satisfying the assumptions of the theorem about the derivation of the integral by
the parameter is discussed in the [9]. The derivation by parameter implies that

−1− α
2

κ
α+1
α−1

∂I(y,κ)

∂κ
= Ã−1 = I(y,κ),

which leads us to differential equation

I(y,κ) +
1− α

2
κ
α+1
α−1

∂I(y,κ)

∂κ
= 0. (18)

Let’s also derive the right-hand side of the integral I(y,κ)

∂

∂κ

[ y
κ

K−α+1

((
2−αy κ

) 1
1−α
)]

= − y

κ2
K−α+1

((
2−αy κ

) 1
1−α
)

+
2
−α
1−α y

2−α
1−α

κ
1−2α
1−α

K ′
−α+1

(
(2−αy κ)

1
1−α
)

1− α
.

If we add the appropriate right-hand sides of I, resp. ∂I
∂κ to the differential equation (18)

we obtain new differential equation[
2κ

2
1−α

1− α
− 1

]
K−α+1

((
2−αy κ

) 1
1−α
)

+
(2−α y κ)

1
1−α

1− α
K ′
−α+1

((
2−αy κ

) 1
1−α
)

= 0. (19)

From this point on, the procedure must be split for small and large values of y. In this
article we show the procedure only for small y. As shown in [7] and [9], the procedure
for large y is the same and also leads to the same results.
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Let’s remind the approximation of Macdonald’s function K−α(x) for small x together
with it’s derivation K ′

−α+1(x) known from [9] as

K−α+1(x) ≈ 2−αΓ(−α + 1)(−2α + 1)α−
1
2 (2x− 2α + 1)−

2α−1
2 xα−1e−x,

K ′
−α+1(x) ≈ [−2x2 − 2x(1− α) + 3α− 2α2]

(2x− 2α + 1)x
K−α+1(x).

By adding the approximations K−α+1 and K ′
−α+1 to (19) and keeping the notation

(2−αy κ)
1

1−α = x we get[
2

1− α
κ

2
1−α − 1

]
(2x− 2α + 1) +

1

1− α
[
−2x2 − 2x(1− α) + 3α− 2α2

]
= 0.

Then, by making a series of adjustments and substituting the argument of the Macdon-

ald’s function (2−αy κ)
1

1−α instead of x, we come to a scaling equation for small values y

2
2−3α
1−α y

1
1−α κ

3
1−α −2

1−3α
1−α y

2
1−α κ

2
1−α −4ακ

2
1−α +2κ

2
1−α +2

2−3α
1−α αy

1
1−α κ

1
1−α −2

2−3α
1−α y

1
1−α κ

1
1−α −3α−4α2 = 1, (20)

where κ = κ(y). Suppose that κ(y) is described by the asymptote κ(y) = ky, where the
real number k is the slope of the asymptote of this function. Let us put this relation into
the equation (20), which gives

2
2−3α
1−α y

4
1−α k

3
1−α−2

1−3α
1−α y

4
1−α k

2
1−α−4αy

2
1−α k

2
1−α +2y

2
1−α k

2
1−α +2

2−3α
1−α αy

2
1−α k

1
1−α−2

2−3α
1−α y

2
1−α k

1
1−α−3α−4α2 = 1.

Then, dividing this equation by the expression y
4

1−α , we get

2
2−3α
1−α k

3
1−α − 2

1−3α
1−α k

2
1−α −

4αk
2

1−α

y
2

1−α

+
2k

2
1−α

y
2

1−α

+
2

2−3α
1−α αk

1
1−α

y
2

1−α

−
2

2−3α
1−α y

1
1−α κ

1
1−α

y
2

1−α

−
3α− 4α2 − 1

y
4

1−α

= 0

whereby we will be interested in the situation where y → +∞, because as we have already
mentioned, even for large values of y the procedure leads to the same results. After the
suggested limit transition we have

2
2−3α
1−α k

3
1−α − 2

1−3α
1−α k

2
1−α = 0.

A simple adjustment leads to

k =
1

2
, i.e.

κ(y)

y
=

1

2
. (21)

Before plugging the found ratio (21) into the scaling equation (20), let’s convert it to the
form

2
2−3α
1−α κ

2
1−α − 2

1−3α
1−α y

1
1−ακ

1
1−α − 4αy−

1
1−ακ

1
1−α + 2y−

1
1−ακ

1
1−α + 2

2−3α
1−α α− 2

2−3α
1−α = 0,

by multiplying with (yκ)−
1

1−α and neglecting the fraction −3α−4α2−1
(yκ)

1
1−α

. Now let’s add the

relation (21) and modify the equation into the form

4κ
2

1−α − 2
1−2α
1−α y

1
1−ακ

1
1−α + 2α− 3 = 0. (22)
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Substitute ξ(y) = κ
1

1−α and transform equation (22) into quadratic equation

4ξ2 − 2
−2α+1
1−α y

1
1−α ξ − (−2α + 3) = 0

with the roots

ξ(y)± = 2
α−2
1−αy

1
1−α ±

√
2

2α−4
1−α y

2
1−α − α

2
+

3

4
.

From the notation of ξ(y), we will henceforward consider the positive root only. After

applying the inverse substitution β =
(
y
2

) 2
1−α we find

ξ(β) =

√
β

2
+

√
β

4
− α

2
+

3

4

and then after the return to original variables ξ(β) = κ
1

1−α
(17)
=
√
λ we get

λ(β) =
β

2
− α

2
+

3

4
+

√
β

4
(β − 2α + 3).

At the very end of the calculation, all that is left is to use the definition of the asymptote
of the function λ(β) at infinity given by the relation λ = kβ + q0, where k is the slope
and q0 is the intercept. Let us first calculate the slope

k = lim
β→+∞

λ(β)

β
= 1.

Then the intercept q0

q0 = lim
β→+∞

(λ(β)− kβ) = −α +
3

2
.

If we add k and q0 to the definition of asymptote, then for small y (small β) we get the
asymptotic relation

λ(α, β) ≈ β − α +
3

2
. (23)

If we now reverse our relabelling α↔ −α, we reach the final form of asymptotic approx-
imation of scaling constant for GIG distribution

λ(α, β) = α + β +
3

2
+ o(1); β → +∞. (24)

Note that in order to scale Generalized Inverse Gaussian distribution, the scaling condi-
tion (15) must be satisfied.

5 Conclusion

This paper analyzes mathematical properties of Generalized Inverse Gaussian distribution
(GIG), which is frequently used in the areas of renewal processes, particle systems, and
vehicular headway modelling. The presented theoretical study reveals unknown and
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surprising anomalies hidden in the scaling procedure. We show that searching the scaling
constant λ in the probability density

f(x) = Θ(x)

(√
λ
β

)α+1

2Kα+1(2
√
βλ)

xαe−
β
x e−λx,

whose value assures the unit expected value
∫
R xf(x) dx, may not be successful. The

basic condition for the probability density (with parameters α ∈ R and β > 0) to be
scalable has been derived in this article and has the form

α + β + 2 > 0.

In addition, it has also been shown that the course of the scaling constant λ – understood
as a function of β – is almost linear. The respective linear aproximation is of the shape

∀α ∈ R : λ(β) = α + β +
3

2
+ o(1); β → +∞.

This generalizes the asymptotic behavior of the scaling constant λ derived in earlier works
for non-negative values of the parameter α only.
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Abstract. This article explains the causes of anomalous phenomena discovered during the
analysis of vehicular traffic streams on multi-lane roads. Although this explanation is based
primarily on a thorough mathematical analysis of the problem under study, it ultimately pro-
vides answers to questions about the specifics of the interaction dynamics that operate between
individual vehicles of a multi-lane traffic flow. The article acquaints readers with the theory
of balance particle systems and with a mathematical way leading to the classification of one-
dimensional particle systems according to the level of statistical fluctuations. This classification
then allows automatic detection of statistically anomalous states of all related systems.
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1 Introduction

The creation of this article (and the entire theory that represents a mathematical core of
the issue) has been motivated by an open problem in the theory of vehicular traffic flow.
While the microstructure of traffic streams on single-lane roads was relatively credibly
described and justified at the beginning of this millennium, anomalies were detected for
data measured on two-lane motorways. The origin of these anomalies has waited quite
a long time for explanation. The basic building blocks of the respective solution is the
unification of the procedure of empirical-traffic-data processing and the conversion of the
problem into a mathematical formalism. This enabled the conversion of qualitatively-
described anomalies into rigorously defined anomalous states (so-called super-Poisson
states), which can be acquired only in some systems with mutually interacting particles.

The main pillars of the whole solution are:

1. Rigorous proof that in all one-dimensional particle systems, where the interaction
acts on a small scale only (i.e. for interactions between several nearest neighbours),
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the probability density describing the spacing (headway or clearance) between suc-
ceeding particles must be described by a function belonging to the class of the
balanced densities (see [1]).

2. Anomalous states in empirical traffic data can be most easily detected through the
so-called 3s-unification procedure [2].

3. The finding that a similar issue was investigated within the Random Matrix Theory
[3], where the apparatus of statistical rigidity was advantageously applied for similar
purposes.

4. Analytical derivation of the headway distribution for equilibrium states in a ther-
modynamic particle gas defined by a general interaction potential ϕ(x) and by a
general value of the statistical resistivity β ∝ 1/T, where T is the thermodynamical
temperature of the gas (see [4]).

5. Rigorous proof [2] that in one-dimensional particle systems with a zero or repulsive
force between neighbours, the statistical compressibility is always less than one.

This article explains the background of the so-called super-Poisson states in particle
systems similar to vehicular traffic streams. First, we recall the well-known fact that
in the Poisson system of non-interacting agents, the statistical compressibility, which
describes the rate of statistical fluctuations in the system, is equal to one. Furthermore,
using a theoretical tool of the balanced particle systems (or renewal theory [5, 6, 7]) we
explain what is the main cause of exceeding the limit value of statistical fluctuations in
certain types of systems (or in certain states of one system). In this way, we de facto
solve the above-mentioned open problem from the scientific field of Vehicular Headway
Modelling.

2 Balanced particle systems

2.1 Concept of balanced particle systems

We consider an infinite one-dimensional particle system with a fixed origin. At the origin
of this system lies a particle which is referred to as a reference particle. In the figure 1,
the position of the reference particle is ξ0. Then we denote the positions of the other
particles by ξ1, ξ2, ξ3 . . . Among the three basic random quantities that naturally describe
any particle system, we count:

1. Spacings, i.e. distances of neighbouring particles, which we understand as absolutely
continuous and non-negative random variables. These variables form the so-called
sequence of spacing distributions (Rk)

+∞
k=0 .

2. Multi-spacings, understood as distances of the selected particle from the reference
particle (see figure 1). To be specific, multi-spacing Xk represents a distance between
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Figure 1: Basic descriptive quantities of a particle system.

the (k + 1)th particle and the reference particle. It means that kth multi-spacing
is possible to define by formula

Xk =
k∑
i=0

Ri.

3. Interval frequency NL, which maps the number of particles occurring in the interval
(0, L) lying immediately next the reference particle. NL is – contrary to spacings
and multi-spacings – a discrete random variable, parameterized by the value of L. It
is usually described by the probability of occurrence k particles inside the interval
(0, L). The corresponding probabilistic task can be logically formulated by means
of the expression P [NL = k] =?

By the balanced particle system (BPS) we mean a sequence of multi-spacings (Xk)+∞k=0

established by expression Xk =
∑k

n=0Rn satisfying the following axioms:

1. Axiom of the identical distribution (i.d.): Sequence (Rn)+∞n=0 is a sequence of non-
negative, absolutely continuous and equally distributed random variables.

2. Axiom of the balanced generator : Probability density h(x) for all random spacings
R0,R1,R2, . . . (so-called generator of the balanced particle system) belongs to a
class B of balanced densities, i.e. h(x) ∈ B (see definition below).

3. Axiom of convolutional compatibility : Sequence (Rn)+∞n=0 is sequence of convolution-
ally compatible random variables, i.e. for every pair of different random variables
Ri and Rk (i 6= k) it holds Ri +Rk ∼ (h ? h)(x).

The axiom of convolutional compatibility can, as understandable, be replaced by the
more stringent requirement that the sequence (Rn)+∞n=0 is a sequence of i.i.d. random
variables. Under this assumption it is easy to prove that

Xk ∼Fk
i=0h(x).
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2.2 The class of balanced functions

The class of balanced functions B is the space of piecewise continuous functions f(x) on
R with Dom(f) = R, Ran(f) ⊂ [0,+∞), supp(f) ⊂ [0,+∞), for which – above that –
there exists positive number κ so that

(∀α > κ) : lim
x→∞

f(x)eαx = +∞ ∧ (∀α < κ) : lim
x→∞

f(x)eαx = 0 (balance axiom).

The number κ is referred to as balancing index and denoted by inb(f). In fact, belonging
of headway distribution to the space B must be met for all one-dimensional particle
systems, where inter-particle interactions are restricted to a few neighboring particles
only [8, 2], which definitively corresponds with vehicular traffic systems.

2.3 Stochastic many-particle gas – physical realization of the
balanced particle system

The physical realization of the above-discussed balanced particle system is represented
by an ensemble of many identical particles located along a curve (typically a semi-line,
line, or circle) subjected to stochastic noise of various intensities. The noise level in this
system is controlled by the so-called stochastic resistivity coefficient β. The zero value
of β implies an absolute noise-level in the ensemble, which therefore corresponds to the
Poissonian system where purely random locations of particles generate the exponentially
distributed inter-particle headways, whose steady-state headway distribution reads

g(x) = Θ(x)ae−ax.

Conversely, if the resistivity β is increasing above all limits the system corresponds in
fact to a deterministic system, whose inner dynamics is not burdened with any stochastic
fluctuations. Under this condition it holds g(x) = δ(x − ν), which means that particles
are located equidistantly in locations ξ0, ξ0 + ν, ξ0 + 2ν, ξ0 + 3ν, . . . . Here δ(x) stands for
the Dirac delta. The arrangement of particles in the two border variants does not depend
in any way on interactions between individual particles. However, the situation will
dramatically change for intermediate values 0 < β < +∞. Then the stationary state of
the system will be strongly dependent not only on the value of resistivity but especially on
interaction forces that determine mutual interactions between neighbouring particles in
the system. In a homogeneous variant of the system, when all neighbouring particles are
repulsed/attracted via the same force description (force F (x) and interaction potential
ϕ(x)), where F (x) = −ϕ′(x), the associate steady-state of the system is described (see
general derivation in [4]) by the following inter-particle headway distribution:

g(x) = AΘ(x)e−βϕ(x)e−λx, (1)

where constants A = A(β) and λ = λ(β) ensure the proper normalization and scaling,
respectively.

In addition, under the conditions

ϕ′(x) ≤ 0, lim
x→0+

ϕ′(x) = −∞, lim
x→+∞

ϕ′(x) = 0, (2)
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applied to p.d.f. (1) the following implication holds

µ1 = 1 =⇒ λ ≥ 1 ∧ µ2 ≤ 2, (3)

where µk =
∫
R x

kh(x) dx is k−th statistical moment. Moreover, limiting values are
λ = 1, µ2 = 2 are obtained for Poissonian system, which is either a system with ab-
solutely non-interacting particles, i.e. ϕ(x) = 0, or stochastically irresistible system
where β = 0. These variants are described by the same exponential headway distribution
h(x) = Θ(x)e−x, for which therefore the statistical variance VAR(X ) = µ2 − µ2

1 is equal
to one.

A note
As usual, we will assume without loss of generality that the balancing particle system is
scaled, i.e. the mean value of the spacing is therefore

∫
R xh(x) dx = 1.

3 Statistical rigidity and compressibility

One of the fundamental characteristics of the BPS is the so-called statistical rigidity
∆(L), mapping the variability of the interval frequency NL. Application of this quantity
in studies of particle systems can be found already in Random Matrix Theory [3], where
statistical rigidity maps the variability of energy levels in spectra of heavy nuclei. It is
defined by the relation

∆(L) = E(NL − L)2. (4)

The graph of statistical rigidity is relatively simple for classical systems. Immediately
behind the origin of the coordinate system, statistical rigidity ∆(L) merges with its linear
asymptote. Thus,

∆(L) ≈ χL+ δ + o(L2) (L→ +∞), (5)

which means that the statistical rigidity can be approximated extremely accurately by the
linear function χL+δ. The constants χ, δ of this linear asymptote are called compressibility
and deflection, respectively. It is a well-known observation of particle system theory that
for expressing the compressibility and deflection of a given BPS it is sufficient to know
the generator of the BPS. For compressibility and deflection the following relations hold:

χ = µ2(h)− 1, δ =
1

6
(9µ2

2 − 9µ2 − 4µ3 + 6). (6)

A detailed derivation of these two relationships can be found in the research project [9].

4 Classification of systems according to a rate of fluc-

tuations of the interval frequency

Balanced particle systems may be – as expected – classified according to the compress-
ibility χ. In Figure 3 we can see four color-coded regions, namely regions of deterministic
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Figure 2: Statistical rigidity of freeway data in a fast-lane traffic flow. Vehicle-by-vehicle
data have been collected during 90 days at freeway circuit R1 (located near Prague, Czech
Republic) by technology of induction double-loop detection.

states (red), sub-Poisson states (blue), Poisson states (green), and super-Poisson states
(turquoise). The Poisson states (χ = 1) and deterministic states (χ = 0) represent the
boundary states for all particle system and are discussed in more details below. The
blue region of sub-Poisson states includes the vast majority of real physical, biological,
economic, or socio-dynamic systems, since in the physical theory of thermal-like systems
this corresponds to systems with pure repulsive potentials ϕ(x), where compressibility χ
lies in the interval (0, 1).

The most interesting type of particle system (and also the rarest and least researched)
is the super-Poisson variant of the balanced particle system, for which the respective
compressibility exceed the unit value. In such systems, the rate of fluctuations is – as
obvious – greater than in Poisson systems, which are generally considered to be the
systems with the highest fluctuation rates, since fluctuations are not reduced in any way.

These considerations force us to ask the following questions: Do super-Poisson systems
exist at all? Can super-Poisson states be found in real-life (physical, biological, economic,
or socio-dynamic) systems? The answers will be given in the following text.

4.1 Dirac particle systems

In a Dirac equilibrium particle system or deterministic system, the slope of the statistical
rigidity, i.e. compressibility, is zero. It is the state of the system when the individual
particles are equidistantly distributed and the stochastic resistance β grows beyond all
limits. However, such a state is only a theoretical state. In real traffic streams, where
vehicles are driven by somewhat imperfect humans, the Dirac arrangement of vehicles
never can be reached.
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Figure 3: Classification of balancing particle system states.

4.2 Poisson particle systems

The opposite of Dirac’s BPS is Poisson’s BPS. In such a system, the stochastic resistivity
is zero and the dispersion of the spacing is equal to one since the particles do not interact
with each other and are therefore fully independent. This allows absolute freedom in
decision making by individual particles and the spacing between them is therefore very
spread out. In empirical traffic ensembles, this situation can be detected at very low
traffic densities (up to 5 vehicles per kilometre of motorway). Since drivers in such sparse
traffic are hardly influenced by neighbouring drivers at all, they have maximum freedom
for traffic manoeuvring.

5 Super-Poisson particle systems

As already explained, a balanced particle system has a super-Poisson arrangement if the
associate compressibility is greater than one. This means that in such a system, individual
realizations of a selected random variable are even more dispersed around their mean value
than in the Poisson system, where the particles are completely unaware of each other.
Initially, measurements falling in super-Poisson region were considered to be measurement
errors. With the passage of time, however, it became clear that measurements are not
erroneous and that not only repulsive forces but also attractive forces act between the
elements. As discussed above, if strictly repulsive forces are acting in a particle system,
then the super-Poisson state cannot occur. If compressibility greater than one is detected
in a particle system, then it can be logically assumed that there is also an attractive force
acting between the elements in that system. This attractive force, similarly to a more
common repulsive force, has a psycho-social origin. In vehicular traffic, the super-Poisson
conditions occur, for example, at lower traffic densities in the fast lane of a motorway.
Drivers located in the faster highway lane tend to catch up with the vehicle in front of
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Figure 4: Data from the Dutch A9 highway.

them, and this tendency is the cause of an attractive force-impulse. Another reason for
increasing compressibility above the theoretical limit is the fact, that in lower densities
of traffic flow are overtaking manoeuvers possible and line changing causes super-Possion
behaviour of traffic flow (see [2]).

In figure 4 we can see the result of the analysis of traffic data from a Dutch two-lane
motorway. The measured spacings from the main lane are marked in blue, where the
compressibility is inside the interval (0,1) all the time and thus falls into sub-Poisson
states. The data from the fast lane are marked in red and as can be seen, the assumed
upper bound on the value of the spacing variance (in green) is exceeded in the fast lane
at lower traffic densities, namely at densities of 5 – 20 vehicles per km. However, at
these densities, the traffic flow is not so sparse that individual vehicles do not interact
and repulsive forces are applied. What causes this deviation, however, is the action of
the aforementioned attractive force. The existence of attractive forces in these traffic
flow situations is due to the presence of more sporty drivers in the fast lane of traffic on
highways. These drivers catch up with the vehicle in front of them and, with small gaps
that are unusual at the given speed and density, try to push the vehicle in front of them
out of the faster lane in order to continue driving fast.

The main cause of super-Poisson states is therefore the attractive force, which should
be reflected in the force-description of respective particle gas. In order to be collision-free,
the repulsive force must also be included, and hence the potential acting in respective
ensembles is the so-called combined potential. Its physical shape is ϕ(r) = κ ln(r) + 1

r
,

where r is the distance between consecutive vehicles and κ represents a power coefficient,
quantifying the ratio between the attractive component ln(r) and repulsive component
1
r
. By deriving the potential, we get the corresponding force

F (r) = −dϕ

dr
= −κ

r
+

1

r2
.
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Figure 5: Force with different selection of κ.

As we can see, this force is preventing the collision, i.e.

lim
r→0+

F (r) = lim
r→0+

(
−κ
r

+
1

r2

)
= lim

r→0+

−κr + 1

r2
= +∞,

and at the same time for large headways the interaction disappears, i.e.

lim
r→+∞

F (r) = lim
r→+∞

(
−κ
r

+
1

r2

)
= 0.

The attractive force-component is represented by the term −κ/r, whereas a repulsive
force-component is represented by the term 1/r2. In figure 5 a few examples of combined
forces are visualized. Near the origin, one can see a strong repulsion and then – below
the horizontal axis – we detect the region where repulsion is dominated by attraction.

6 Conclusions

This article summarizes the latest findings on so-called super-Poisson states in the field
of Vehicular Headway Modelling. This paper also provides a reader with an overview
of balanced particle systems and their classification based on statistical rigidity resp.
compressibility.

As we have seen, there is a significant difference in compressibility between the fast
lane and the main lane on the motorway up to a certain traffic density (approx. 40
vehicles per kilometre). At higher densities, the behaviour of drivers on the main and
fast lanes is quite the same. At lower traffic densities, the fast lane exhibits significantly
higher compressibility than the main lane while the compressibility increases above the
theoretical unit value of an interference-free Poisson system. In a BPS where purely
repulsive forces are at work, this theoretical limit cannot truly be exceeded. Above-limit
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compressibility can be detected in a system only if there is an attractive component of
the interaction force. The explanation for the existence of an attractive component is the
presence of sporty drivers in a fast lane, the possibility of overtaking and switching lanes.
That is consistent with the fact that super-Poisson states are detected in multi-lane traffic
and do not occur in higher traffic densities where there is insufficient freedom for those
factors.
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Abstract. Agent-based cellular models can be used to simulate the process of evacuation of
people from a room. The actions and interactions of heterogeneous agents create collective
motion and capture complex phenomena of pedestrian dynamics. This article presents a multi-
agent cellular model based on floor-field model extended by a new strategy for solving conflicts
when two or more agents attempt to enter the same cell. The agents and the model have various
parameters that influence the conflict solution. A sensitivity analysis on these parameters is
performed that reveals the individual contribution of variance in the results.

Key words: multi-agent system, cellular model, aggressivity, conflict solution, evacuation
simulation, sensitivity analysis.

1 Introduction

Increasing demands on safety procedures in buildings or during various events, such as
evacuation, or demonstration, call for answers on pedestrian dynamics. Some available
solutions provide precise simulations on how people move and interact, and others focus
on real-time results and adaptation to a fast-changing environment.

The environment and setting are specific for each building, location, and various
groups of people. It is essential to understand the influence of individual parameters on
the process with so many possible settings. Simulating the process on a whole parametric
space is very slow and could be sped up using only the significant parameters selected by
sensitivity analysis.

The inspiration for the model used in this research is the floor field cellular model
described by Katsuhiro Nishinari and Andreas Schadschneider in Article [1]. Main char-
acteristic of this model is in the use of several floor fields — static, dynamic, fire haz-
ard, . . . These can be explained as two-dimensional lattices made of discrete cells that
hold some value and abide to certain rules. Pedestrians in the evacuation, who are agents
with individual parameters, move in the rectangular two-dimensional lattice. Parame-
ter of aggressivity was introduced in the work of Pavel Hrabák and Marek Bukáček in
Article [2].

141
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This article shows improved feature of conflict solution and provides a new approach
to the movement of agents in the model. These improvements are linked to the sensi-
tivity parameters of agents to the environment, because the conflict solution depends on
them. The qualitative analysis focused on the relation between number of agents in the
evacuation and the total evacuation time. The range of agent’s sensitivity to static field
was analyzed and a reason for limiting this range is explained. The final contribution of
this research is the sensitivity analysis of input parameters to the variance in observable
quantities, namely the total evacuation time.

2 Definition of the model

The evacuation model represents the people in evacuation as agents who move on a grid
that acts as a room or other area. The grid is two-dimensional, rectangular, and consists
of discreet cells. Cells can be occupied by agents who move from one cell to another in
8 directions or stay in the same cell. The movement in the model is strictly discrete due
to the nature of the cellular model. Movements are executed simultaneously, which leads
to conflicts when two or more agents attempt to enter the same cell. Only one agent can
be present in a cell at a time.

The agents are somewhat autonomous and react to the environment. They generally
move in the direction to the exit. In this paper, only grid with one exit is considered.
Because the exit is a cell, only one agent can leave the room at every synchronous update
of the simulation.

2.1 Strategies

The collective motion of agents is reproduced using two strategies (choosing destination
cell and solving conflicts), and using heterogeneity in the parameters. The strategies are
affected by parameters of aggressivity and sensitivity of each agent and by parameter of
friction [2]. The parameter of aggressivity plays a role in situations when two or more
agents attempt to enter the same cell.

Figure 1: Example of cellular floor-field model utilizing static and dynamic field, where
agent can move to cells in Moore neighbourhood. Taken from [4].

In each step of the simulation, all agents calculate the attractivity of individual cells
in their neighborhood N . N is a set of adjacent cells to the cell occupied by agent, and
the occupied cell as well. Attractiveness or attractivity is used to calculate probability
P ∈ [0, 1], which is the probability of agent selecting this cell as his preferred destination
cell. The selection is executed in stochastic manner.
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2.1.1 Cell selection strategies

Value of attractiveness depends on strategy for choosing destination cell. Former strategy
was described by Pavel Hrabák and Marek Bukáček in Article [2].

The new strategy, proposed in the bachelor thesis Conflict solution in cellular evacua-
tion models [5], is more affected by the sensitivity to the occupancy of cells kO. Probability
P of agent moving to cell y from cell x, is calculated from PO and PS.

In the equations below can be found following members: S(y) is a function of static
potential of cell y, where S(y) ≥ 0. Associated parameter kS is the sensitivity of agent to
the static potential of a cell. O(y) is the indicator of occupied cell y. When y is occupied
by an agent, O(y) = 1, otherwise it is zero. Associated parameter kO is the sensitivity
of agent to the occupancy of cell. D(y) is the indicator of diagonal motion from agent’s
origin cell x to destination cell y. When y can be entered from x by diagonal motion,
D(y) = 1, otherwise it is zero. Associated parameter kD is the sensitivity of agent to
diagonal motion.

P (y ← x | N) = kOPO(y) + (1− kO)PS(y) (1)

The term PO focuses on occupancy of cell. Notice the missing parameter kO in (1−O(y))
which is different from former strategy [2]. Term PO is normalized across PO of neighbor
cells from N ,

PO(y) =
exp(−kSS(y))(1−O(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1−O(z)(1− kDD(z))

. (2)

The term PS takes into account the static potential S(y) and makes the agent move in
the correct direction to the exit, and the indicator of diagonal motion D(y). Term PS is
also normalized across neighbor cells from N ,

PS(y) =
exp(−kSS(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1− kDD(z))

. (3)

2.1.2 Conflict solution strategy

Above was described the first part of conflict solution - the selection of target cell by
agents. Evaluation of each cell depends on the sensitivity parameters. When two or
more agents attempt to enter the same cell, conflict occurs and consequent action is the
selection of the winning agent. Main factor in the process is the aggressivity parameter
γ of individual agents and the friction parameter µ.

From agents {x1, . . . , xk} attempting to enter target cell, an agent xj is chosen with
j = argmaxi=1,. . . ,k γi . If no other agent has same the aggressivity, agent xj wins the
conflict immediately. If there are two or more agents with same highest aggressivity a
parameter of friction µ affects the conflict. With probability B = µ(1 − γj) none of the
agents will enter the cell and they will all remain in their positions. This event is called
blocking event. With B̄ = 1− B agent xj will enter the cell. This strategy is explained
in detail in Article [2].
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2.2 Implementation

My research of available agent-based modeling frameworks revealed Mesa [6] as an up-to-
date Python framework which is currently used in many projects [7, 8]. This framework
allows broad customization: from discrete to continuous movement, synchronous or asyn-
chronous update and various types of data collection. Mesa framework allows progressing
in the simulation with different speed or by single steps, which is very helpful for examina-
tion of the course of the simulation. Overview of the situation can also be demonstrated
with real-time graphs of data-collectors for various observed values. Implementation de-
tails can be found in the original thesis [5].

3 Sensitivity analysis

This section presents research based on quantitative and qualitative analysis of the input
parameters. On one hand, the quantitative analysis measures the influence of the individ-
ual input parameters on the simulation using sensitivity analysis in OptiSLang software.
On the other hand, qualitative analysis of the model shows how the parameters are linked
together. The qualities of the model were researched by observing running simulations
and by statistical methods of analysis.

To start with the analysis a number of simulations were executed, all using the Mesa
framework with data collection of the agents in each step - their position, number of wins
in conflicts etc. The most important observable is the total evacuation time - number of
steps in the simulation needed for evacuation of all agents.

3.1 Sensitivity analysis using MOP

To measure the contribution of individual input parameters on the variance in TTET,
OptiSLang uses Metamodel of Optimal Prognosis (MOP). The metamodel includes Poly-
nomial, MLS or Krigins model. At first, OptiSLang calculates the prognosis quality of
each available model, (Polynomial, MLS, Kriging) using Coefficient of Prognosis (COP)
and then chooses the one with the highest quality.

As a result of the MOP, we obtain an approximation model, which includes the im-
portant variables. Based on this meta-model, the total effect sensitivity indices, . . . , are
used to quantify the variable importance. The variance contribution of a single input
variable is quantified by the product of the CoP and the total effect sensitivity index es-
timated from the approximation model [9]. COP(Xi) is variance contribution of single
input variable Xi, that shows how much Xi contributed to the approximated variance
using MOP. When MOP has COP 60%, it means that it was able to capture 60% of
the variance in observed quantity. Some parameters can be related to each other and
the sum of individual parameters COP(Xi) can exceed total COP or even 100%. For
example, in MOP with COP 60%, parameters X1 and X2 with COP(X2) = 50% and
COP(X2) = 20% individually contributed with 50%, respectively with 20%, to variance
in observed quantity.

All simulations had the same model configuration of grid 15×15, exit placed at border
(0, 8). Simulations in this article always assign aggressivity γ to agents uniformly from
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the interval [0, 1] with granularity m = 10, thus for all agents γi ∈ {0.0, 0.1, . . . , 0.9, 1.0}.
These values are generated by PRNG G1, initialized by seed I, which also generates the
positions of the agents on the grid. All simulations share the same seed.

The sensitivity parameters (kS, kD, kO) are uniformly assigned to all agents (if not
stated otherwise). The friction parameter µ is a global parameter of the model that
affects the stochastic occurrence of blocking occasions from conflicts.

Simulation name
Parameters Step S2 S3 S4

iterations - 3 2 2
kS 0.1 [0.3, 5.0] [1.5, 4.5] {1.5, 3.0, 4.5}
kO 0.1 [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
kD 0.2 [0.0, 0.1] [0.0, 1.0] [0.0, 0.9]
µ 0.2 [0.0, 0.1] [0.0, 1.0] [0.0, 0.9]

Table 1: Settings for simulations in SA.

4 Results

The results of SA in this chapter are explained by graphs from OptiSLang: the 3D
plot of total evacuation time (TTET) and COP of individual parameters. The discoveries
of qualitative analysis, such as linear dependency of TTET on number of agents n, are
depicted by other graphs, for example histograms or boxplots.

4.1 Number of agents n

It was expected, that the increase of total evacuation time TTET is linear and depends on
the number of agents n. Figure 4 demonstrates the linear dependency of TTET on n.

The sensitivity parameters for blue boxplots are kO = 0.9, kD = 0.5, µ = 0.9 and for
red boxplots kO = 0.9, kD = 0.5, µ = 0.1. Horizontal axis x is the number of agents n
in tens and vertical axis y is total evacuation time TTET. The boxplots show the variance
in TTET for each n. There are two graphs with different kS ∈ {1.5, 3.5}.

In both figures, the simulations with higher friction µ = 0.9 show increasing variance
of TTET, because with more agents the conflicts occur more frequently and this results
in more blocking occasions. Contrary to this, the boxplots in red, where µ is low, are
rather consistent. These figures also demonstrate linear dependency of TTET on number
of agents. The slope of linear dependency is influenced by other parameters, just as the
variance in TTET.
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Figure 2: kS = 1.5
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Figure 3: kS = 3.5

Figure 4: Linear dependency of TET on number of agents. Higher friction, blue boxplots,
increases variance of TTET. Two graphs with different kS show linear dependency of total
evacuation time on n, regardless of kS.

5 Sensitivity to static field kS

The probability of choosing destination cell y is calculated from members PO and PS in
the new strategy for choosing destination cell. Notice PS member in equation below:

PS(y) =
exp(−kSS(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1− kDD(z))

.
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For better demonstration, the member (1− kDD(y)) is left out from the edited equation
P̄S, where y is destination cell from neighborhood N for agent A in cell x,

P̄S(y) =
exp (−kSS(y)) · exp (kSS(x))∑
z∈N exp (−kSS(z)) · exp (kSS(x))

=
exp (−kS(S(y)− S(x)))∑
z∈N exp (−kS(S(z)− S(x)))

.

(4)

The equation above leads to discovery of member P̄S being proportional to exponential
difference in static potential:

P̄S(y) ∝ exp (−kS(S(y)− S(x))). (5)

For cell y, which is closest to exit — lowest S(y) from adjacent cells — the relative
attractivity (the right hand side of Equation (5)) grows exponentially with increasing kS.

The influence of kS can be very strong for high numbers, and marginal for values lower
than 1. It was noticed during the testing phases of the model implementation, when the
simulations with very low kS values lasted very long. Visual examination of simulation
exposed the erratic movement of agents that did not progress to the exit.

Figure 5 shows the 3D plot of approximated TTET, from simulation S2 in Table 1,
exported from OptiSLang. The black dots are the values of TTET from the simulations.
MLS model was selectedy by MOP. Vertical axis T is the TTET, on horizontal axis F are
values of friction µ and horizontal axis S holds the values of sensitivity to static field kS.
This graph shows very high TTET for kS < 1.5.

In the same figure, on the right, is a graph with COP of individual parameters. The
COP(kS) is prevalent and other parameters have marginal values of COP. This is because
of undesired erratic movement of agents, that increases TTET and it’s variance, when kS
is lower than 1.5. In Figure 7 can be spotted how TTET does not change much for values
higher than 4.5. Because of these reasons, the interval of kS was limited to [1.5, 4.5] in
further simulations.

In Figure 5, the influence of µ on axis F might seem marginal, but, as will be presented
later, the friction parameter µ plays an important role in the course of the evacuation.

In simulations with kS ∈ [1.5, 4.5], other parameters influence the simulation more
significantly, as can be seen in Figure 6 in COP graph on the right. According to COP,
the most significant parameter is friction µ, that contributed with 48% to variance in
observed quantity TTET. Formerly, the most significant parameter was kS, with COP(kS)
higher than 86%. Now, COP(kS) dropped to 6%, on par with COP(kD). COP of MOP
on the top of the graph, is lower as well: was 88% and now is 67%. This can be explained
with very high variance in TTET for kS < 1.5, which was attributed to kS. In simulations
with limited kS, the variance in TTET is lower.

6 Sensitivity to occupancy kO

Lower values of kO allow the agent to choose an occupied cell as his target cell. At
the start of the simulation, the agents are densely packed. The same applies to the
congestion, when more agents are approaching the exit (or bottleneck in general), than
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Figure 5: Left: 3D graph of total evacuation time, exported from OptiSLang. Right: COP
of input parameters, exported from OptiSLang. Data from simulation S2. For kS < 1.5
the total evacuation time is erratic and meaningless, which lead to limit of the range of
kS to [1.5, 4.5].
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Figure 6: Left: 3D graph of TTET from OptiSLang. Right: COP of input parameters,
exported from OptiSLang. Data from simulation S3. With limited range of kS, the COP
of individual parameters, on the right, is well distributed. Note: The angle of view is
different compared to Figure 5, axes F and S are switched.

are being egressed. In both situations, kO plays a role, as agents near the exit, and agents
on the border of the congestion cluster, can choose empty or occupied cells.
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Figure 7: Different sets of parameters kO, µ and how they affect TTET. Vertical axis is
averaged TTET from three simulations and horizontal axis is variable kS. Lower kO and
higher µ increase evacuation time.

Figure 7 shows the characteristics of four constant parameters sets with variable
kS ∈ [1.0, 5.0] on x axis. Each set of parameters was simulated 100 times and the vertical
y axis is the averaged TTET from these simulations. Even though the lines are not very
smooth, it needs to be said that the resolution of TTET is high — TTET is in range from
80 to 125. All sets have the same kD = 0.5.

The green line shows how parameters kO = 0.9, µ = 0.9 are affected by kS. The
relative position of the green line, compared to others, shows that by allowing agents
to overtake queue (high kO) and with low number of conflicts (low µ), the evacuation
times are the shortest (81 to 105 epochs). Contrary to this, with same kO and higher
µ = 0.9, the evacuations take longer (105 to 117 epochs) and the results for various kS
vary a lot due to more frequent conflicts. The remaining two sets have low k0 = 0.1,
which minimizes overtaking, and forces the agents to stay in queues.This results in longer
evacuations. The higher µ = 0.9 in the orange line is rough. It should be noticed, that
with increasing kS, the evacuations take longer than in the beginning (115 epochs for low
kS and 125 epochs for higher kS). In the end the total evacuation time is increased with
lower kO and it also increases with higher µ.

7 Other discovery: heterogeneity in parameters

The evacuation model can assign different parameters to individual agents from a uni-
form distribution, or assign different parameters to groups of agents. Values generated
by PRNG are subject to stochastic selection. To see how the model responds to homoge-
neous and heterogeneous parameters, simulations S6.1 and S6.2 were performed. In both
simulations grid 15×15 was used, with exit placed at (0, 8) and populated with 70 agents.
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Simulations were repeated 1000 times,

First simulation S6.1 with set of input parameters kS = 2.0, kD = 0.5 and low µ = 0.1.
This simulation was, at first, run with homogeneous kO = 0.5 for all agents. The blue
histogram in Figure 7 shows distribution of TTET from 1000 iterations of this simulation.
Most iterations, more than 300, resulted in TTET ≈ 85 and all iterations had TTET ∈
[80, 96].

This simulation was then rerun, also repeated 1000 times, with heterogeneous distri-
bution of kO. The 70 agents were split to two groups of 35. First groups was assigned
kO = 0.1 and second group k0 = 0.9, so the average kO of all agents was 0.5, identical to
the previous run. The orange histogram in Figure 7 shows that this simulation resulted
in shorter evacuations — all iteration had TTET ∈ [80, 91].

Another simulation S6.2 was performed, this time with increased friction µ = 0.9,
other parameters remained unchanged kS = 2.0, kD = 0.5. Identical to S6.1, simulation
was repeated 1000 times — once for homogeneous and then for heterogeneous kO of agents.
Figure 7 shows that distribution of TTET for homogeneous kO, blue histogram, is similar
to heterogenenous kO for two groups of agents, orange histogram.
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Figure 8: Simulations S6.1 (left) and S6.2 (right) with heterogeneous and homogeneous
distribution of parameter kO, repeated 1000 times. Blue histograms show TTET for ho-
mogeneous kO = 0.5. Simulations with two groups of agents with with different kO = 0.1
and kO = 0.9 are captured in orange histograms.

8 Conclusions

In this article research on cellular models, that simulate the evacuation of people from a
room, was described. The process of conflict solution, when two or more agents attempt
to enter the same cell, was analyzed. The floor-field model, which was an inspiration for
this model, uses two cellular fields: dynamic and static field. Also present is a set of input
parameters that influence the behavior of agents in the model and the microscopic pro-
cesses within (conflict solution, choosing destination cell, formation of structures). The
agents in the simulation, who represent pedestrians in evacuation, can have homogeneous
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or heterogeneous parameters, for example the parameter of aggressivity, specific for each
agent, that plays a role in solving conflicts.

To perform said research, an agent based cellular evacuation model was implemented
using Mesa ABM framework for Python. Using agents, the model is able to capture
the collective motion of pedestrians during an evacuation. It also demonstrates various
phenomena of the evacuation, for example, the congestion at the exit. Individual agents
are autonomous and interact with each other. These interactions, mainly the conflicts,
are analyzed. The model consists of various components, that can be further extended
or customized.

During the implementation of the model, after observing the evacuation process, a
new strategy for choosing destination cell was proposed and implemented. It affects the
movement of agents and thus significantly impacts the conflicts that emerge from these
movements. Also, this strategy puts more attention to the input parameter of sensitivity
to occupation kO, which produces more evenly distributed probabilities of moving to
adjacent cells. Compared to the old strategy, the probabilities of adjacents cells are more
intuitive and the impact of kO can be thus explained better.

The model uses a stochastic selection for several processes in the simulation. It is
a desirable feature as it replicates the randomness in human behavior. Due to variance
in observed quantities (total evacuation time) with the same input parameters, it was
necessary to analyze the contribution of individual input parameters to the variance in
TTET. This was achieved by means of sensitivity analysis in OptiSLang software and by
other auxiliary methods.

The results of SA show the influence of individual input parameters on the course
of the evacuation. One concrete contribution of this article is connected to sensitivity
to static potential kS. SA of kS revealed, that low values of kS < 1 produce erratic
movement of agents, that degrades the course of the simulation. On the other end, with
increasing kS, for example kS > 3.0, the influence of individual sensitivity parameters
kO, kD is marginalized.

Contrary to sensitivity parameters, friction parameter µ showed consistent influence
on the variance in TTET, regardless of other parameters. This parameter directly affects
the number of blocking occasions, which increase the total evacuation time.

The sensitivity to occupancy kO allows agent to choose an occupied cell as his des-
tination cell. Qualitative analysis of kO revealed that parameters kO and sensitivity to
diagonal motion kD affect each other, as kD allows agents to overtake queues, which are
formed due to kO.

Other notable discoveries consist in analysis of number of agents n, and of heterogene-
ity in parameters. Numerous simulations with variable n showed that with increasing n,
increase in TTET is linear regardless of other parameters. Other simulations examined the
course of the evacuation with different distribution of kO of agents. In simulations where
all agents are uniformly assigned one value of kO = a, total evacuation times are different
than in simulations, where two values of kO are assigned to equally sized groups — the
average kO of agents in both groups is a. This discovery needs to be further researched.



152 M. Šutý
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Abstract. Density is one of the fundamental quantities for a description of pedestrian dynam-
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1 Introduction

Flow, velocity and density are considered fundamental quantities in the both traffic flow
[30] and pedestrian dynamics [4, 23]. Primal models discovered relationship between
these essentials in a plain macroscopic way, for instance [31]. Although they describe
the current phase of the system, they make it without any specific information about
the dynamics inside the whole. It is possible to obtain two systems under very different
internal conditions, however they both achieve the same value of flow or density [14].

Lots of ways to compute their values come from their physical definitions

J =
N

∆T
[ped · s−1], ρ =

N

|A|
[ped ·m−2], (1)

where N represents the number of agents that left an observed area in time interval T or
were found in an observed area A of the size |A|. Hydrodynamic approximate equality
[23]

J = ρ · v (2)

brings the (mean) velocity relation. Many authors dealt with different definitions during
evaluation these quantities in data analysis. e.g. [6, 25, 27, 29], in details see Section 3.

Let us, firstly, present the used concept in this study which was introduced in [27],
and applied in [2, 33] from macroscopic and also microscopic point of view. After that
we will present the contemporary state of the art in Section 3.

153
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2 Concept and Definition

We bet on the following approach to estimate the density. We assume every single
pedestrian to be a source of individual density distribution. Let us rewrite the definition
of density in an area A as an estimate using kernel distribution theory [1, 3, 35]

ρ =
N

|A|
=

∫
A
p(x) dx

|A|
=

∫
A

∑N
α=1 pα(x) dx

|A|
=

N∑
α=1

∫
A
pα(x) dx

|A|
, (3)

where N represents the number of pedestrians, |A| the size of considered area A, pα(x)
the individual density distribution generated by each pedestrian α ∈ {1, 2, . . . , N} and
p(x) =

∑N
α=1 pα(x) the density distribution in the area A.

The area A does not have to be static (a detector approach) like in [27] – if it represents
the surroundings of pedestrian α, which can be variable in time (a dynamic approach),
we call the density individual [2, 32]. For clarity in further text, let denote ωα as the
surroundings of pedestrian α, then we note ρωα(x) as the individual density for pedestrian
α, in contrast to the static detector density ρA(x).

In a case that area A fills the whole examined area, the individual density distribution
holds normalization condition ∫

A

pα(x) dx = 1, (4)

therefore the relation
∫
A
p(x) dx = N is fulfilled and the density ρA is called global. When

an area B ⊂ A covers only the part of the possible area A, the pedestrian can contribute
to the density ρB only partially and the normalization condition is not fulfilled.

If the kernels intersect the walls, they have reduced bases not to expand from the
room, i.e. we trim the bases just for the part lying inside the room without damaging
the normalization condition (4) - therefore the peak of the individual density distribution
will be higher than usually.

To emphasize the generality of relation (3), we can write the definition of the density
including kernel parameters

ρA =

∫
A

∑N
α=1 pα(x, R) dx

|A|
, (5)

moreover the individual density including surroundings of pedestrians

ρωα(r) =

∫
ωα(r)

∑N
β=1,β 6=α pβ(x, R) dx

|ωα(r)|
, (6)

where we exclude the individual density distribution of the pedestrian α, i.e. pedestrian
α does not contribute to the density in their surroundings. It has better meaning now
because if there is not any other pedestrian near pedestrian α, the individual density is
equal to zero. For instance: if we do not exclude the pedestrian α, the individual density
will be equal to the mass of pedestrian α in the circular surroundings ωα(r), i.e. ρωα(r) = 1
ped/m2 for R <= r and any other pedestrian represented by cone at least r + R m far
away.
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In accordance with characteristics mentioned above, we refer to parameter R as blur
(it represents the size of area affected by one pedestrian) and r as range (it expresses the
size of pedestrian surroundings defining the area taken into account for evaluating the
density).

It is clear now that we can set two factors before evaluating the density - the shape
of the detector or pedestrian surroundings (i.e. the area where the density is evaluated)
and the shape of the individual density distribution (i.e. the way how the pedestrian
contributes to the total density distribution). It is worth to note that these two fac-
tors are completely independent and should be established with respect to the following
application.

2.1 Type of Kernels

If the surroundings is set to the whole considered area and Dirac function is used as
the individual density distribution, the standard approach (1) is obtained. However
there is more different choices of kernels as the individual density distribution. Denoting
xα := xα(t) as the (head) position of pedestrian α at fixed time t ∈ R+

0 , let us mention
a few of them which will be used in further analysis.

� Point approximation
pα(x) = δx,xα

as already mentioned Dirac delta function.

� Stepwise function

pα(x, R) = 1Aα(R)(x)
1

|Aα(R)|
,

where 1X represents the indicator function of set X.

1. Cylindrical kernel

Aα(R) =
{
x ∈ R2 : ‖x− xα‖ ≤ R

}
and

1Aα(R)(x) = Θ (R− ‖x− xα‖) .

2. Voronoi kernel is a specific kernel influenced by kernels around.

– Each spatial point x ∈ R2 is assigned to the nearest pedestrian α at
position xα. The set of these points is called Voronoi cell and it is denoted
as Aα for pedestrian α [27].

– Aα does not depend on any blur parameter R. It is possible to use a
parameter as an upper boundary of the size of Voronoi cell [27]. Nev-
ertheless we do not implement this kind of parameter in our study - it
would have a different meaning (maximum blur) than a simple blur of
pedestrian used in other kernels, thus it would not have been compara-
ble. Beside that the maximum blur would influence only the low occupied
room, i.e. only a beginning of density time series under conditions of our
experiment. However it is necessary to think about usage the maximum
blur in general situations.
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– We have to remark that the authors of [27] summed in relation (3) Voronoi
cells of pedestrians that lie inside the detector at least by a part of their
Voronoi cells (the sum is greater than real contained mass), or Voronoi
cells of pedestrians that lie inside the detector (the sum is lower than real
contained mass). We use here the accurate sum of the part of Voronoi cells
lying inside the detector - not less, not more. The situation is depicted in
Figure 1.

Figure 1: Using Voronoi diagram according to [27] from [27].

� Conic kernel

pα(x, R) =
3

πR3
1Aα(R)(x) (R− ‖x− xα‖) ,

where
1Aα(R)(x) = Θ (R− ‖x− xα‖) .

It has several desired features for representing pedestrians compared to the stepwise
kernels, e.g. decreasing trend with increasing distance, limited support and the
independence of one pedestrian to the others.

� Borsalino kernel from [15], where it is defined for one dimension. Generalization
used in this paper for two dimensions can be defined as follows

p(x, R) =
1

Z

1

R
1Aα(R)(x) exp

{
R2

‖x− xα‖2 −R2

}
where

1Aα(R)(x) = Θ (R− ‖x− xα‖)

and Z is numerically calculated normalization constant.

This kernel has similar properties as the conic kernel. However they differ in the-
oretical features - Borsalino kernel is differentiable and this fact can be helpful in
analytical calculations. On the contrary, the conic kernel does not have to be nor-
malized using numerical computation. More about their differences with respect to
the evaluating of densities will be found in further text.
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� Gaussian kernel in a symmetric version, i.e. with diagonal covariance matrix,

pα(x, R) =
1

2πR2
exp

{
−‖x− xα‖

2

2R2

}
.

This is the only representative with a limitless area of influence (i.e. with unbounded
support) in this study.

Blur parameter R represents the kernel bandwidth in our study, thus it is comparable
through all used kernel shapes. The example of density distribution with blur equal to
0.5 m for different kernels can be seen in Figure 2.

We work with all mentioned kernels in their symmetric version here. It does not have
to be this way in general, though. Furthermore the kernel size can be definitely enhanced
by varying in time in accordance with the conditions in pedestrian surroundings. We will
not cover that in this study, it is the main point of the following research.

Figure 2: Density distribution with R = 0.5 m.

2.2 Type of Surroundings

Having introduced the individual density of pedestrian α (6), we need to specify the shape
of the pedestrian surroundings in the meaning of the dynamic detector. The choice of the
specific shape is very promising in bending of the definition (6) for a specific purpose in
the microscopic point of view. This individual approach is a crucial point of the ongoing
research - we will be investigating sector, circle and ellipse in the sense of surroundings.
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Figure 3: Density distribution with R = 0.5 m.

3 History and Relation to other Works

Having defined all important terms, it is necessary to set the used concept into the context
of work by other research groups. Definition of pedestrian density estimate is still the
contemporary topic in question, which is clearly seen from Table 1, where we summarized
the estimate evolution (not only for the kernel concept). The standard definition (and
its upgrades) were studied a lot, after that researchers started to use approaches based
on statistics methods, including kernel estimates. Subsequently, the kernel smoothing
parameter begun to be the centre of attention. Since we came with the application of
the kernel approach bended into the individual density, we are not interested only in the
bandwidth of the kernel. This extended approach brings more parameters to explore.

We have to note that it is not possible to choose a specific approach as the only correct
one. Nevertheless, the chosen method affects the evaluation of quantities significantly,
therefore it may have an impact on results, e.g. an examined phenomenon, like researchers
already discussed [24, 11, 29, 27]. Then our motivation for this parametric study is
absolutely clear.

3.1 Density Estimate Evolution

As we have already mentioned, the standard density definition is the ground (1). How-
ever, this density estimate has lots of negative properties, e.g. discontinuousness, large
scatter and it gives only an averaged information about current system state [27]. Thus
alternative definition of density was required. The smooth number of pedestrian in space
and time was used in [10]. Finally, the smooth contribution of pedestrian into the density
in space and time was introduced in [9], and applied in [13, 12]. This definition is also an
initial step to the individual density concept with dynamic detector. This weighting of
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pedestrians is mentioned in [22, 23], including the density estimate defined as the body
projection into the observed area [21] or by an inverse headway.

Very important paper [27] about measuring fundamental quantities introduced the
concept that we use in this work. Authors discus in detail the properties of the standard
definition (1) and come with the kernel approach, they note few kernels that can be
used (Gaussian, conic, cylindrical) and pick Voronoi diagram to estimate the density
distribution in the observed area with additional parameter (maximum blur is fixed as 2
m2). We mentioned differences between their and our Voronoi density in Section 2. To
stabilize the Voronoi method, an averaging over time is applied in [17].

Comparison of lots of different method was brought in [6]. Another comparison of
different methods (which are similar as the methods marked above) can be found also in
[11] with the aim of the measuring of pedestrians safety.

Authors across all the mentioned papers definitely agree in one important fact - the
disadvantage of using Gaussian kernel is the scaling parameter which has to be calibrated
(this is also the reason why Voronoi kernel was preferred up to the present). Let us note
that huge advantage is the possibility of interpretation, i.e. weighting of the pedestrian
into the space in accordance with the distance to a specific point. It is noticed in [6] that
different estimate can be appropriate (the best) for different situation. For this reason,
it is more than important to study the parameters in the kernel concept to realise how
the specific setting can influence the result.

At this stage of research, we became with our first paper about this topic [2], where we
brought the kernel approach with respect to the individual density (6). If we put together
the idea about weighting of the pedestrians [9], range-based method [6] and our idea about
the dynamic detector in every time step, we obtain our definition of individual density
(6) which brings another set of parameters into the density estimate. We performed very
preliminary parametric study of the size of the conic kernel and the circular surroundings
using velocity response [2]. However, it was showed that the velocity-density relationship
cannot be quantified so easily (by Pearson correlation) in the crowd. We summarized
this paper with outlook to the future work. Thus we extended the research in [33]
using follower-leader concept for the crowd behaviour where the classic velocity-density
relationship does not work.

3.2 Kernel Bandwidth (Smoothing Parameter)

Silverman solved this issue in statistics [26]. However, this kind of solution is not appro-
priate for pedestrian dynamics - it should be recomputed every single time step, because
the pedestrian density is dynamic in time. It would result in the variable kernel size. It
is definitely possible, although this dynamic change would not come from the pedestrian
dynamics, but from statistics - it takes into account only variance and interquartile range.
And this property does not make a good sense to us. For these reasons, it has to be found
something different. Few researchers dealt with it [16], [20, 19], [18], [8, 7].

We have to notice that there is not one correct method to use for finding the bandwidth
of the kernel - for the same reasons as in the case of the kernel shape. Authors might
to work with any smoothing parameter that is appropriate for their density application.
Due to this fact, it is very important to understand the blur parameter in detail, before
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more complex usage, to make sure that the author’s choice is justifiable.

Ref. Year First Author Dim Kernel Details

[5, 4] 2005 Daamen 2 - density defined using travel times

[10] 2006 Helbing 1 - smooth particle count

[9] 2007 Helbing 2 exponential weighted pedestrian contribution

[13, 12] 2008 Johansson 2 exponential local density as in [9] using weights

[16] 2009 Krisp 2 Gauss tool for visual choice of bandwidth

[27] 2010 Steffen 2 Voronoi the concept used here

[22, 23] 2010 Schadschneider 2 exponential concept from [9] mentioned

[24] 2011 Schadschneider 2 - no consensus for the estimates

[17] 2011 Liddle 2 Voronoi stabilization of the result

[28] 2011 Tipakornkiat 1 - density at sidewalks (crossing lines)

[36] 2011 Zhang 2 Voronoi comparing of few methods

[20, 19] 2012 Plaue 2 Gauss bandwidth depends on time

[7, 8] 2013 Fan 2 Gauss density of vehicular streams

[29] 2015 Tordeux 1 Voronoi, Gauss comparing of few methods

[6] 2015 Duives 2 Voronoi, exp. comparing of few methods

[15] 2018 Krbálek 1 Borsalino smooth particle count

[18] 2019 Mollier 2 Gauss opt. bandwidth for vehicles [7]

[2] 2019 Bukáček 2 Cone individual density study

[11] 2020 Hillebrand 2 Voronoi, Gauss comparing of few methods

[33] 2020 Vacková 2 Cone application of individual density

Table 1: State of the Art: Estimates of Densities in Pedestrian Dynamics.

4 Conclusions

Having done the brief excursion through the history of pedestrian density estimates, we
see that the whole thing has to be studied much deeper than it was already done. The
density is undoubtedly affected by the parametric setting. Motivation of our research [34]
is then evident.
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1 Introduction

We need to note that this paper is a direct follow-up to [7]. To preserve the reading
experience, we recommend the reader to read the predecessor first. Briefly, we need to
remind that we have defined and explained a kernel approach used for density estimates
in [7]. Every kernel representing individual density distribution (i.e. the way how the
pedestrian contributes to the total density distribution) has its size denoted by parameter
R called blur (it represents the size of area affected by one pedestrian). Besides, there
is one more factor which has to be set before evaluating the density - the shape of the
detector (i.e. the area where the density is evaluated).

Motivation for this contribution is that the density estimate depends on the parametric
settings and it cannot be said which parametric settings is the best. Thus the parametric
study is needed because it may bring new insights into the understanding of this topic.

The following parametric study is based on the egress experiment organized in the
study hall of FNSPE, CTU in Prague in 2014, see [1, 2, 3] for details. Pedestrians
(undergraduate students wearing recognition caps) randomly entered the room by one of
three entrances, walked to the opposite wall and left the room by one exit. By controlling
input flow, different conditions from free flow to congestion in the exit area were achieved.
In total, our sample is made up of 2000 paths through 10 experimental runs captured
using 48 frames per seconds.

Cone, cylinder, Gauss and Borsalino kernels are evaluated for R ∈ {0.1, 0.2, . . . , 3}.

165
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Voronoi distribution and point approximation are evaluated only once (there is no pa-
rameter).

2 Study of the Static Detector

Let start our parametric study with a simple static detector in order to examine the kernel
shape and size without any need to take into account the shape and size of pedestrian
surroundings. We choose to start with one experimental round from E4 and the static
detector defined as the red rectangle area A in Figure 1

A :=
{
x = (x1, x2) ∈ R2 : x1 ∈ 〈2, 4〉 ∧ x2 ∈ 〈0, 1〉

}
and denote ρ(t) := ρA(t) for simplicity in this section.

We will examine what the change in the kernel settings causes in the density values
and even in the fundamental diagram itself. We will use the variable called count C(t) :=
CA(t) instead of the density very often - the reason is that we have the static detector
here, thus the value of the density would be divided by a same constant in all cases.
Finally, we will use a normalized time tnorm in the meaning that the start is represented
by tnorm = 0 and the end by tnorm = 1. Due to this normalization it is possible to compare
more experimental runs in the future in the same figure without any ambiguousness.

Figure 1: Trajectories in the round 6 of the experiment and chosen static detector (red
rectangle).

2.1 Roughness and Featureless

We plotted the pedestrian count C(t) in Figure 2 for all examined kernels (explanation
why the Borsalino kernel is missing here will be found in the further text in Section 2.5)
and R ∈ 〈0.1, 2〉 m. We can see an essential difference between Guassian kernel and the
conic or the cylindrical kernels, which behave similarly. The kernel of Gauss smooths
the pedestrian count from R = 1.5 m significantly - it is caused by the limitless support,
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however this reason can be subsequent to different scaling of Gauss and other kernels, for
detail explanation see Section 2.3.

Voronoi cannot be discussed in this way because it has no parameter to change. The
similarity of the count generated by Voronoi diagram and other kernels will be researched
in Section 2.4 separately.

Figure 2: Pedestrian count with respect to time and kernel size.

To quantify this observation, we define mean absolute derivative (depicted in Figure
3) understood as the roughness of the curve

〈Ċ〉 :=
1

N] time

N] time∑
i=2

|C(ti)− C(ti−1)|
ti − ti−1

[ped/s],

where ]time denotes the total number of times (frames) that we have available from the
experiment. Let us mention that (ti − ti−1)−1 = frame rate = 48 s−1.

Already mentioned properties can be clearly seen in Figure 3. Moreover, the point
approximation (Dirac distribution) generates (as the most scattered curve with lots of
jumps) an upper boundary for the others and Voronoi count can be interpreted as the
median value for conic or cylindrical curves. Gaussian curve confirms that the Gaussian
kernel is the most smoothed kernel shape. Besides, the conic kernel converges to the
Gaussian one for increasing R. Cylindrical kernel converges too, if we exclude the trend
from R > 2.5 m, which can be caused by a (very smoothed) pedestrian leaving the
detector (and the rest of their kernel still being in the detector at the same time) - this
situation can make a significant change in the count. It is, of course, influenced by the size
of the detector - the larger the detector, the smaller the jump. Cylindrical kernel is almost
the same as the curve of the conic kernel, for low values of R is cylinder greater than
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cone - it is produced by the fact that cylinder is similar to Dirac distribution, especially
for R small.

We are not interested only in the trend, but also in the range of the curve. This
property is described by the maximum of pedestrian count maxtC(t) [ped] which is
understood as the level of the featureless. Gaussian kernel is the most smoothed kernel,
thus its maximum of the pedestrian count has the lowest value from the all compared
kernels for every blur R. Due to the definition of the kernels, it is obvious that cone has
greater values of maximums than cylinder for all values of blur. Dirac has the greatest
value again and Voronoi values has the same interpretation as above. We can say that

max
t
CDirac(t) ≥ max

t
CCone(t) ≥ max

t
CCylinder(t) > max

t
CGauss(t).

Figure 3: Left: the mean absolute derivative of the pedestrian count. Right: the maxi-
mum of the pedestrian count.

2.2 Fundamental Diagram

Having discussed the time development of the pedestrian count, it is important to inves-
tigate the impact of the parametric choice (kernel and its size) on fundamental diagram,
especially the fundamental relationship between velocity and density (the flow can be
computed using hydrodynamic approximation).

We define the corresponding speed as the mean (current) speed of all pedestrians
occurring in the detector at the same time, because we assume the speed as the speed of
the pedestrian mass in the detector - every speed has the same weight.

There is more options to define the mass speed for fundamental diagram. For instance,
we could define the speed as the size of the velocity which is the resultant of the velocities



Pedestrian density estimates 169

of all pedestrians in the detector. It is definitely possible to define the speed using kernels
too. However, it is the point of the possible future work to study the difference between
these definitions.

It is not feasible to plot fundamental diagrams for all parametric settings, therefore
we fit the curves and compare two parameters of these fits. We use fit defined by Pipes
[6] from vehicular stream

v(ρ) = v0

(
1− ρ

ρJ

)3

, (1)

where two banal equalities are fulfilled v(0) = v0, v (ρJ) = 0. Parameters v0, ρJ ∈ R+

with respect to R are drawn in Figure 4.

Figure 4: Parameters of the fit of Pipes with respect to blur R for 6th experimental
round.

We can see that the range of values is much smaller for parameter v0 than for pa-
rameter ρJ - v0 is very similar for all kernels. The most different kernel is the Voronoi
diagram because the other kernels generate more mass already during the entering into
the detector - the Voronoi creates the most blurred pedestrians if the occupancy in the
room is low. Parameter ρJ is distinguishable between kernels and show us the main
difference in the fundamental diagrams - the ’width’ of the data cloud.

2.3 Mass Recomputation of Gaussian Kernel

We have noticed from previous discussions that Gaussian kernel has very similar result
in trends as conic kernel, however the results are shifted due to the fact that Gaussian
kernel has limitless support as opposite to cone. We would like to examine now if any
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formula exists between Gaussian and conic kernel that it would erase the shift between
them.

To reach our aim, it is necessary to get ’almost all’ mass of Gaussian kernel into the
base of the cone AR = {x ∈ R2 : ‖x‖ ≤ R} . Let us denote Gaussian kernel at zero with
variance σ2

p(x, σ) =
1

2πσ2
e−
‖x‖2

2σ2 .

Thus we solved the following integral∫
AR

p(x, σ) dx =

∫ R2

2σ2

0

e−tdt.

The result is lower incomplete Gamma function which has numerically known values. As
we want to find relation between R and sigma, let assume that R = k σ. Then∫

Ak σ

p(x, σ) dx =

∫ k2

2

0

e−tdt.

Values of this integral are computed in Table 1 for k ∈ {1, 2, 3, 4}. We can see, for
instance, that for choice σ = R

3
the Gaussian mass is inside the base of the cone with

radius R by almost 99%. This is the reason why their densities are comparable - see
Figure 5.

k [-] 1 2 3 4
mass [%] 39.35 86.47 98.89 99.97

Table 1: Gaussian mass inside the base of cone for different values of k.

Figure 5: Gaussian and conic densities in time for experimental round number 6.
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2.4 Alternatives of Voronoi Diagram

Having researched impact of kernels on density and fundamental diagram, it could be
interesting and useful to realize if there is any parametric settings of kernels which is
very close to pedestrian count computed with Voronoi distribution. To measure this
(dis)similarity, we choose total absolute deviation.

Figure 6: Alternatives of Voronoi diagram for round number 6: time development (left),
pedestrian count distribution (right).

Time development of pedestrian count (left) and pedestrian count distribution for
different kernels versus Voronoi distribution (right) are denoted in Figure 6. We can
say that Voronoi diagram has its alternatives among other kernels, specifically for R ∈
(0.7, 1.5) m. However there is greater range for Voronoi than for other kernels and also
slight differences for low densities in Figure 6 (left). This undervaluation of Voronoi
pedestrian count is evident in Figure 6 (right). The greater range could be caused due to
the property that Voronoi can resemble Dirac distribution under specific condition (dense
crowd).

2.5 Conic versus Borsalino Kernel

Finally we want to compare two very similar kernels - conic kernel and Borsalino kernel [5]
which were properly defined earlier and their density distributions are depicted in Figure
7. Considering properties of these two functions (limited support, decreasing trend), we
expect the same behaviour.

Mean absolute derivative and maximum of pedestrian count for conic and Borsalino
kernel are in Figure 8. We can see that the results are almost identical.
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Figure 7: Density distribution of conic and Borsalino kernel.

Figure 8: Mean absolute derivative and maximum of pedestrian count for cone and
Borsalino for round number 6.

3 Real Applications

Density distributions can be very useful - very important quantity for civil engineering
is pedestrian comfort. First author is currently part of the research team at Faculty
of Civil Engineering, Brno University of Technology, which want to properly define and
appropriately use this quantity. Firstly, during work under project TAČR ZETA Effective
spatiotemporal predictions using machine learning methods, well working definition of
comfort was created which led to use density by density distributions in the way of
median value (over time), i.e. ρ0.5(x, R). To find appropriate kernel size, proxemic zones
were assumed [4] and 80 percent of the mass of the Gaussian kernel was chosen to fit into
personal space (which was delimited by Hall). The rest of the kernel covers other proxemic
zones. This definition give us reasonable findings according to preliminary results. More
information can be found in the project report.

Nowadays, new definition arises and the further results will be published in the future.
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4 Conclusions

To conclude, the density evaluated inside the detector significantly depends on the blur
parameter hidden inside the individual density kernel. As shown by this study, desired
behaviour of detector density from perspective of ’roughness’, ’pedestrian blending’ and
’stability in time’ may be achieved by a specific setting of this parameter. Presented
(symmetric) kernels may differ by scaling (e.g. conic versus Gaussian kernel), however
all of them converge to similar value of density. Even the shape itself can be used for
fine-tuning, the final choice may be driven rather by an implementation preference than
data requirements.

Analysed non-parametric density evaluation methods (point approximation, Voronoi
diagram) bring similar values as the kernel methods with the appropriate value of blur
parameter - to be more specific, the blur going to zero mimic the point approximation
and the blur in interval (0.7, 1.5) m fits the Voronoi method.

Further research would extend presented work by pedestrian surrounding analysis,
i.e. studying the area that impacts pedestrian behaviour. However, the results have
promising impacts to the real application (by ’comfort’ metrics) and theory (possible
analytical solutions of density development).
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Abstract. Reliable classification of acoustic emission signals is crucial for practical use
of this nondestructive testing technique. During the classification, signals are represented by
a convenient, low-dimensional set of attributes. This contribution adresses the problem of
selecting appropriate atributes and consequently describes and compares several classification
methods, specifically Division methods, Model Based clustering, KDE method and classification
using Supervised Divergence Decision Tree. The paper proposes new attribute and classification
method. The methods were tested and compared on a set of laboratory measured data. The
most reliable method seems to be the supervised KDE classification method.
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1 Introduction
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Figure 1: Typical example of acoustic emission signal with its spectrum.
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Acoustic emission (AE) is the phenomenon of releasing accumulated deformation en-
ergy in the form of elastic waves in solid materials. AE naturally occurs as a result
of permanent changes in material internal structure e.g. formation of a crack, plastic
deformation, or mechanical loading. Therefore, screening of AE has huge potential in
the field of non destructive testing, where it allows detecting, locating, and, with some
prior knowlege, even characterising damage. AE waves are detected on the surface of
given object using piezoelectric sensors. An example of typical AE signal, along with its
spectrum computed using FFT, is given in Figure 1. This paper shortly describes the
attributes extracted from such signals as well as classification methods used to classify
the signals based on their physical origin. The results of classification methods and their
comparison are presented.

To test and compare implemented methods we used a dataset from an experiment [2],
in which AE was initiated on a thin metal plate by various artificial sources (pen-test,
fall of ping pong ball, etc.). Available data are presented in Table 1.

Source type src. 1 src. 2 src. 3 src. 4 src. 5
N. of observations 65 173 103 126 135

Table 1: Available AE data

2 Signal Attributes

Usage of the whole measured signal for classification purposes appears to be inefficient
[4], it is therefore necessary to represent the measured signal by a low dimensional set
of attributes that are extracted from the signal. These attributes assign each signal to
a point in the factor space so the task of classifying signals is transformed into finding
clusters of these points in the factor space. During classification we usually use 2 or 3
dimensional factor space. Further, we describe implemented attributes, xt denotes the
measured signal and Sf is its normalized spectrum.

1. Attribute Zc:

Zc =
T−1∑
t=t̃

δ(xt),

where t̃ = min J, J =

{
j ∈ [0, T − 1] : xj ≥ c max

t∈[0,T−1]
|xt|
}
, c ∈ (0, 1),

δ(xt) =

{
1 if sgn(xtxt+1) = −1,

0 otherwise.

2. Attribute M :

M = argmaxt∈[0,T−1]|xt|.
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3. Attribute Wα:

Wα = argminl∈[0,T−1]

T−1∑
f=0

|l − f |
∣∣∣|Sf | − ∣∣ ST ∣∣∣∣∣α,

where
∣∣ ST ∣∣ =

1

T

T−1∑
f=0

|Sf | and α ∈ [1,∞).

4. Attribute Qβ:

Qβ = min
{
F ∈ [0, T − 1] :

F∑
f=0

|Xf | ≥ β
}

for a fixed β ∈ (0, 1).

5. Attribute Sγ:
Sγ = max J −min J,

where J =
{
j ∈ [0, T − 1] : |Xj| ≥ γ max

f∈[0,T−1]
|Xf |

}
, γ ∈ (0, 1).

6. Attribute P :

P =
1

T

T−1∑
f=0

fSf .

3 Classification Methods

Let us suppose that we measured n signals of AE coming from M different physical
sources. Each signal is represented using d attributes as a point in d-dimensional factor
space. The set of n measured signals represented in factor space is denoted as x =
(x1, . . . , xn) ⊂ Rd. All implemented classification methods except MBC are supervised,
therefore it is necessary to provide them with a training dataset T = (T1, . . . , TM) ⊂ Rd,
where xik ∈ Ti if and only if xik comes from i-th source.

Model Based Clustering

Model Based Clustering (MBC) method treats data as a realization of a random variable
with probability density in the form of distribution mixture [7] composed of M normal
components pj of corresponding dimensions. We can write this mixture as

p(x|Θ) =
M∑
j=1

αjpj(x|θj),
M∑
j=1

αj = 1.

To estimate the parameters Θ = (α1, . . . , αM , θ1, . . . , θM), fully describing the distribu-
tion, we use an EM (expectation minimization) algorithm [1], because it is not possible
to maximize the likelihood function of the mixture directly since we do not know the
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affiliation of samples to components. EM is an iterative algorithm which maximizes the
conditioned expectation of likelihood

Ez(l(Θ|z ,x )|x ,Θ), (1)

where z is an affiliation matrix. We then assign i-th sample to j-th cluster if

j = argmaxj∈M̂

(
αjpj(xi|θj)

)
.

Supervised Model Based Clustering

Supervised Model Based Clustering (SMBC) method is an improvement of MBC method
using provided training data T . In MBC the initial values of parameters
Θ = (α1, . . . , αM , θ1, . . . , θM) in EM algorithm are chosen randomly, SMBC uses training
data to initialize these parameters closer to their actual values, making EM algorithm
more likely to converge to a global maximum of expectation in (1).

Since we suppose that the components of distribution mixture are normal distribu-
tions, the paramethers θi are of the form θi = (µi,Ci). We use the MLE to estimate these
parameters from each dataset Ti through

µ̂i =
1

ni

ni∑
k=1

xik, (2)

Ĉi =
1

ni

ni∑
k=1

(xik − µ̂i)(xik − µ̂i)T , (3)

where ni is number of observations in Ti. Parameters αi are initialized as

α̂i =
ni∑M
j=1 nj

, (4)

in order to take into account different sizes of sets Ti. After the EM algorithm estimates
the final values of parameters, data x are assigned to the clusters the same way as in
MBC.

Gaussian Mixture Model Clustering

Gaussian Mixture Model Clustering (GMMC) method is derived from MBC method as
a naive, more simple classificator, which does not use the EM algorithm and is therefore
extremely light and fast. We suppose again that the data come from a mixture of normal
distributions

p(x|Θ) =
M∑
j=1

αjpj(x|θj).

However, this time we estimate the parameters Θ only based on the training dataset T ,
while we use (2),(3),(4), so the final form of the mixture distribution is

p(x|Θ̂) =
M∑
j=1

α̂jpj(x|θ̂j), θ̂j = (µ̂j, Ĉj).

Data x are then divided the same way as in MBC and SMBC.
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Supervised Kernel Density Estimation Clustering

Supervised Kernel Density Estimation Clustering (SKDEC) method still keeps the notion
of mixture distribution, in this case, however, instead of working with parameterized
normal distributions, we use the nonparametric kernel density estimator described in [3].
We are using Epanechnikov kernel and Silverman bandwidth parameter minimalizing the
MISE, see [1].

Mixture distribution is now in the form of

f̂(x) =
M∑
i=1

αif̂i(x),

where each component f̂i is the kernel density estimate of the training data from Ti, i.e.

f̂i(x) =
1

nihi

ni∑
k=1

K

(
x− xik
hi

)
,

and the coefficients αi are defined as

αi =
ni∑M
j=1 nj

.

Observation xk from x is then classified into the j-th cluster if

j = argmaxi∈M̂

(
αif̂i(xk)

)
.

Supervised Divergence Decision Tree

Supervised Divergence Decision Tree (SDDT) is a binary classification tree developped
in [5], [6]. It was primarily used to classify data from high energy physics experiments.
Unlike other methods implemented, the SDDT always works with all the attributes avail-
able. The tree is built and initialized with training data (Tsignal, Tbckground). Since it is a
binary classifier, it is necessary to run it M times if we want to classify into M clusters,
always chosing a different set Ti as Tsignal and the rest of training data as Tbckground. The
tree is initialized recursively, further we describe the stages carried out in every node
beggining with the root.

1. We check if the set of observations we receive is clean enough, if so the growth of
the tree is terminated.

2. For a given k < d and for all combinations of k attributes, we estimate densities of
data from Tsignal ∼ f̂s and Tbckground ∼ f̂b using quantile histograms. We have

(
d
k

)
pairs of densities.

3. For all the pairs of densities we compute their Rényi divergence R
(j)
1
2

= R 1
2
(f̂

(j)
s , f̂

(j)
b )

[8].
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4. We choose the j∗-th combination maximizing the Rényi divergence

j∗ = argmax
j∈(̂dk)

(
R

(j)
1
2

)
.

5. We use the j∗-th combination of k attributes to classify observations in this node
using kernel estimation based clustering. Data classified as signal are passed into
the right son and the rest to the left son of the current node.

After finishing the training process, the data, we want to classify, are inserted into the
root and based on their trajectory through the tree an affiliation score is assigned for
each cluster. Data are then classified based on this score.

4 Classification Results

For the attributes dependent on their inner parameters, the following setting was chosen

Z = Z 1
20
, W = W2, Q = Q0,33, S = S 1

3
.

During the comparison and testing of methods a vast number of combinations of attributes
were inspected and parameters Z,Q, P proved themselves to be the most efficient.

In Table 2, the results of classification of signals coming from 3 and 5 sources are listed.
Only the most successfull combinations of attributes are presented. These classifications
are depicted for chosen methods in Figures 2, 3.

Attributes MBC SMBC GMMC SKDEC SDDT
3 sources (Q-Z) 96,5 96,5 96,2 96,5 97,3
5 sources (Z-P) 86,7 88,7 92,0 91,1 89,9

Table 2: Classification results in % of correctly classified

It has proven that the choice of attributes is crucial for a successfull classification. For
well separated clusters, the diferences in succes rate between methods were insignificant.
On the other hand, for clusters which were overlapping, the supervised methods making
use of the training data, were often far more successfull. Overall, the most successfull
method appears to be SKDEC, especially because it is not limited to eliptically shaped
clusters like all the other methods expecting normal components included in the data.
The method SDDT is not very appropriate for this application, mostly because of lack
of training data.
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Figure 2: Classification of 3 sources of signals using MBC method
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